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1 Introduction

Developing countries are often characterized by a large informal sector (La Porta

and Shleifer 2014; Ulyssea 2020) and frequent movement of workers into and out

of marginal jobs, including self-employment, informal and low-earnings wage work

(Donovan, Lu, and Schoellman 2023). These countries are also particularly affected

the most by climate change, resulting in different patterns of labor reallocation across

economic sectors. In some settings, changing climatic conditions disproportionately

harm agricultural production and are associated with workers moving into other sec-

tors in the short run (Colmer 2021; Liu, Shamdasani, and Taraz 2023), with some

suggestive evidence that most of the reallocation is absorbed into small firms in the

informal sector (Colmer 2021). In other settings, similar conditions lead to workers

less engaging in non-agricultural activities in both the short (Jessoe, Manning, and

Taylor 2018) and long runs (Liu, Shamdasani, and Taraz 2023).1 Understanding to

what extent climate induces labor reallocation and in which direction, and among

which types of jobs is central to thinking about total climate change damages, as well

as the future of jobs and food security in developing countries.

This paper provides a theoretical framework to reconcile the seemingly conflicting

results in the recent literature, and generates new empirical evidence capturing het-

erogeneous effects of climatic conditions on structural transformation in the context

of a developing country, Vietnam. A key feature of the empirical analysis is the utiliza-

tion of both short-run weather variation and long-run climate variation to study the

relationship between weather shocks and climate change, and labor allocation across

economic sectors for different demographic groups and markets, thereby illustrat-

ing the role of market integration and labor market frictions in the climate–sectoral

employment relationship.

The framework is developed as a simple general equilibrium model describing a

two-sector economy, with heterogeneous individual productivity in non-agriculture,

following Roy (1951). The model encompasses one of the main mechanisms sug-

gested in the literature as a potential driver of structural transformation (Kongsamut,

Rebelo, and Xie 2001) while taking into consideration the degree of openness of the

economy (Matsuyama 1992). The model predicts that a larger loss in absolute value

in agricultural productivity relative to non-agricultural productivity due to extreme

1Emerick (2018) finds asymmetric short-run effects of negative and positive rainfall shocks to local
agricultural production in India. In particular, positive shocks lead to a decrease in agricultural work
but negative shocks do not increase agricultural work.
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temperatures can lead to a decrease in the agricultural labor share if the economy is

open such that local supply shocks do not affect commodity prices. Furthermore, in

this case, the rate of labor reallocation out of agriculture is decreasing in the costs

associated with working in non-agriculture, which can be inferred from the observed

earnings gains among workers who switched out of agriculture. In contrast, when

the economy is sufficiently closed such that prices are endogenously determined by

local supply and demand forces, a decrease in agricultural productivity can induce

product price changes that lead to an increase in this sector’s labor share. In sum, the

model predicts that the direction and extent of climate change’s impacts on sectoral

labor allocation depend crucially on the economy’s degree of openness and on the

worker-specific costs of working in the non-agricultural sector.

To test the model’s predictions, I rely on data from Vietnam, a lower-middle in-

come country that has experienced rapid structural transformation and growth with

expanding informal and formal non-agricultural sectors over a period of relatively

rapid warming that varies across sub-national regions (McCaig and Pavcnik 2015,

2017; Liu et al. 2020; World Bank n.d.).2 Since its economic reforms in the late

1980s, the country has been increasingly integrated into the global economy, becom-

ing a leading rice exporter. The economy, however, is characterized by large variation

in the level of market integration across provinces.3 Likewise, the rate of change

in sectoral employment shares differs substantially across age groups. The increase

in formal non-agricultural employment share arises largely for younger birth cohorts

entering the labor market more than for prior cohorts of workers at those same ages,

even controlling for educational attainment. For informal non-agriculture, in con-

trast, the change in employment share is largely due to economy-wide trends, indi-

viduals of all birth cohorts move into this sector over time. Together, these features

make Vietnam an ideal setting to explore the demographically and geographically

heterogeneous effects of climate change on intersectoral labor reallocation.4

2The rate of warming in the country is almost twice the global rate over the period 1971-2010 (World
Bank n.d.). Vietnam has a diverse topography, long latitude, and is influenced by the East Sea, resulting
in quite different climatic conditions across space.

3Calculation using household surveys suggests that the correlation coefficient between the local price
and the world price of rice ranges from 0.1 to 0.9 across provinces. See Appendix B3 for details.

4I do not distinguish between informal and formal agriculture because agricultural production in
developing countries is predominantly carried out by smallholder farmers, who generally lack access
to formal labor contract/social security, nor do they register with the government. Lowder, Skoet, and
Raney (2016) estimate that at least 90% of farms in the world are held by individuals and families.
According to the household surveys, in Vietnam, agricultural workers in formal firms account for ap-
proximately 2% of total agricultural employment over the study period.
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I assemble a province-age group panel dataset spanning nearly three decades from

1992 to 2018, based on 11 rounds of nationally and provincially representative house-

hold surveys, linking measures of employment shares and hours worked in each sector

for each age group with weather variables constructed using daily gridded weather

data. I supplement this dataset with other province-level panel datasets on migra-

tion, crop yields, cultivated land, as well as formal firm-level censuses. The use of

sub-national datasets allows me to track local market responses, focusing on the allo-

cation within a province, which I show to be an important, relevant empirical margin

in this setting.5 I proxy for trade openness of a province using the distance from its

geographical centroid to the nearest (three) major seaports.6 This measure is highly

correlated with the price correlation between local and world rice–the country’s main

staple food, but is not associated with any difference in returns to non-agricultural

work relative to agricultural work across spaces once individual selection into sectors

of employment is controlled for.7

I document that provinces with a larger increase in extreme temperatures expe-

rienced a larger reduction in agricultural employment share. Such a correlation ap-

pears stronger for younger workers and in areas close to the country’s major seaports.

These observations are consistent with the theoretical prediction that temperature

change can accelerate an outflow of labor from agriculture under certain conditions

and that the rate of reallocation varies across groups who incur different costs of

movement. However, there could be factors confounding this relationship. For exam-

ple, the expansion of the education system and differential educational attainment

across age groups over time might conflate the temperature effects.

To establish plausibly causal effects of temperature change on sectoral employ-

ment share by age group within Vietnamese provinces, I adopt two empirical ap-

proaches. The first approach exploits year-to-year variation in weather, while control-

ling for analysis unit fixed effects. This approach follows the recent climate impact

literature (Dell, Jones, and Olken 2014) and relies on the identification assumption

that conditional on province-by-age group fixed effects, and region-by-year fixed ef-

fects that vary across age groups, the variations in weather at the local level are

orthogonal to unobserved determinants of sectoral employment in each province-age

5In Section 4.4, I provide evidence that most of the structural change in Vietnam happens within
provinces, and temperatures do not significantly affect inter-provincial migration rates.

6The three major seaports considered include Hai Phong, Da Nang, and Sai Gon.
7If anything, the return to informal non-agricultural employment relative to agricultural employment

is higher in remote places than places close to major ports. There is no statistical difference in the
relative return to formal non-agricultural employment across markets. More details in Appendix B3.
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group cell. I call this the “panel approach.” The second approach follows Burke and

Emerick (2016) and exploits change in province-level temperature distributions over

an extended period of up to 10-15 years, while controlling for region-by-age group

trends. I label this the “long differences approach.” The inclusion of region fixed ef-

fects that vary across age groups in both approaches helps alleviate concerns over the

potential conflation of an education effect with a temperature effect, where the for-

mer is correlated with age. It also addresses concerns about the non-monetary value

of working in non-agriculture, especially formal non-agriculture, which may change

differentially such that at any given point in time, the group of younger workers is

less likely to work in agriculture when temperature increases anyway.

Two main findings emerge. First, temperature change significantly affects sectoral

labor reallocation in both the short and long terms, and these effects happen entirely

at the higher end of the temperature distribution.8 While cold temperatures do not

affect sectoral employment shares, hot temperatures decrease the agricultural labor

share and increase the formal and informal non-agricultural shares. The magnitude

of the estimated effect is economically meaningful. Estimates using the panel ap-

proach show that every additional standard deviation increase in degree days above

27◦C–the 97th percentile of the historical distribution–leads to a reduction of 0.05

points in provincial-level agricultural employment shares, and increases of 0.02 and

0.03 points in informal and formal non-agricultural employment shares, respectively.

These amount to approximately 10-14% of the corresponding sample means. There

is no evidence of a temperature effect on the share of inactive and unemployed indi-

viduals.9 These effects of temperature on sectoral labor shares are similar under the

long differences approach. The increased risks of extreme temperatures, as opposed

to a general warming, leads to a reduction in the agricultural employment share and

increases in both formal and informal non-agricultural employment shares. The es-

timated effects of hot temperature are significantly larger under the long differences

approach than the panel approach.

Second, the average temperature effects mask significant heterogeneity by age

group depending on the type of work climate change-induced intersectoral migrants

8In general, the effects of other weather variables are qualitatively similar to that of hot temperatures.
For example, extremely high and low rainfall or episodes of high winds lead to a reduction in the
agricultural labor share and corresponding increases in non-agricultural employment shares. These
effects, however, are imprecisely estimated and less robust to alternative specifications and thus are
omitted from the discussion.

9The data do not allow me to distinguish whether an individual who did not work in the reference
period was inactive in the labor market or was involuntarily unemployed.
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enter. While workers of all ages are equally likely to move out of agriculture and into

informal non-agriculture in response to hot temperatures, younger workers comprise

most of those who take formal non-agricultural jobs. In other words, most of the

climate-induced labor reallocation takes place among agriculture and informal non-

agriculture. These heterogeneous effects hold both in the short and long terms.

Supporting evidence suggests that these results are driven by relative sectoral

productivity loss and non-uniform labor market frictions. Specifically, the positive

(negative) effects of hot temperatures on non-agricultural (agricultural) employment

shares are concentrated in areas that are reasonably open to trade, where commodity

prices are largely unaffected by temperature shocks. In less connected areas, the real-

location effects run in the opposite direction. Hot temperatures increase the employ-

ment share in agriculture and decrease the labor share in non-agricultural sectors, as

well as household (nonfood) consumption expenditures. Additional analyses show

that hot temperatures, on average, significantly reduce hours worked and labor pro-

ductivity in agriculture, but not in other sectors. Taken together, these findings are

consistent with the model’s predictions that a negative shock to agricultural produc-

tivity has differential effects on sectoral employment shares across spaces depending

on the degree of market integration.

The heterogeneous temperature effects by age group and sector of in-migration

appear consistent with the existence of non-uniform labor market frictions, particu-

larly costs that vary across sectors and age groups. Following the model’s prediction

on the link between observed gains in earnings and costs of working in the non-

agricultural sectors relative to agriculture, I use a sample of workers who changed

sectors of employment to infer the cost of working in informal and formal non-

agriculture, separately for different age groups. The estimated cost of switching from

agriculture to informal non-agriculture is similar across age groups. However, tran-

sitioning into formal non-agriculture is significantly more costly for older workers

relative to younger ones. Thus, given the change in relative labor productivity in-

duced by hot temperatures, workers of different age groups have a similar likelihood

of getting an informal non-agricultural job, but younger workers are much more likely

to take up a job in formal non-agriculture.

This paper contributes to several strands of the literature. Most closely, it joins the

growing body of empirical work linking climatic conditions and intersectoral labor re-

allocation in developing countries.10 Most related are the work of Colmer (2021) and

10Examples include Emerick (2018), Jessoe, Manning, and Taylor (2018), Colmer (2021), and Liu,
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Liu, Shamdasani, and Taraz (2023). On the one hand, Colmer (2021) documents an

outflow of workers from agriculture to other sectors when commodity prices are not

affected by short-term temperature change. Liu, Shamdasani, and Taraz (2023), on

the other hand, find a reduction in the non-agricultural employment share in response

to rising temperature in the long term, and this effect is concentrated among isolated

areas. Building off their work, this paper provides a simple theoretical framework

to understand the heterogeneous effects of climate change across tradable and non-

tradable markets, while also considering the role of labor market frictions to provide

new insights on the type of jobs climate-induced sectoral migrants take. Empirically, I

utilize both short and long-run variations in weather and climate, coupling that with

more comprehensive, micro-level datasets of the entire economy. These enable me to

better understand heterogeneity in worker-specific responses to unexpected weather

shocks and anthropogenic climate change, as well as the underlying mechanisms.

Similar to Liu, Shamdasani, and Taraz (2023), I document a larger temperature

effect in magnitude when using the long differences approach relative to the panel

approach.11 However, there are differences when interpreting these results. On the

one hand, in isolated places where hot temperatures are associated with a contrac-

tion of non-agricultural employment, the larger effect in magnitude in the long run

is consistent with the intensification hypothesis wherein liquidity constraints limit in-

dividuals’ ability to smooth consumption (Liu, Shamdasani, and Taraz 2023). On the

other hand, in other well-connected places where hot temperatures decreases agri-

cultural labor share, the larger effect over the longer time frame and in hotter places

is consistent with workers making forward-looking decisions in the face of the trend

Shamdasani, and Taraz (2023). Given that temperatures have detrimental effects on crop production
(Schlenker and Roberts 2009), a common feature of this literature is the focus on temperature-induced
agricultural productivity shocks proxied by changes in crop yields as the main mechanism. Here I find
that the effect of hot temperatures on yields of rice is only one-third magnitude of the total effect
of hot temperatures on annual revenue per agricultural worker, which could be partly attributed to
a significant reduction in labor supply at the intensive margin in response to hot temperatures. To
the extent that increased input uses are induced by rising temperatures (e.g., Aragón, Oteiza, and Rud
(2021) and Jagnani et al. (2021)), this implies a bigger direct effect of temperature on agricultural labor
productivity had these adaptation practices not adopted. These findings suggest that the heat’s impact
on agricultural labor might transcend the commonly studied land mechanism wherein lower crop yields
drive labor reallocation out of agriculture.

11One particular concern is that while the long differences approach is appropriate to study responses
in the agricultural sector because other inputs and/or the production function (e.g., soil and land) has
not changed much over time, the same might not be true for the non-agricultural sector. To the extent
that other factors are evolving over time in a way that is correlated with differences in temperature, this
will bias the effects on non-agricultural labor shares. While I cannot perfectly rule out this concern, the
larger effects (in magnitude) in the long run in both well-integrated and isolated areas, where the latter
did not enjoy much change in the non-agricultural sectors, do not seem to support this.
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that global warming is disproportionately affecting the agricultural sector, and that

non-agricultural sectors are becoming more attractive.

By explicitly examining the role of labor market frictions, this paper provides a

potential explanation for why climate change might have lasting impacts on long-

term economic growth (Dell, Jones, and Olken 2012), as well as highlights its in-

equality consequences for labor market outcomes. Due to the high cost of moving

into the formal non-agricultural sector, most of the climate change-induced inter-

sectoral labor reallocation takes place among (informal) agriculture and informal

non-agriculture—the two low productivity and low skill-intensive sectors, consistent

with the generally high labor market flows among marginal jobs documented across

developing economies (Donovan, Lu, and Schoellman 2023). Recent work suggests

that informality depresses human capital formation (Bobba et al. 2021), an impor-

tant determinant of structural transformation (Porzio, Rossi, and Santangelo 2022).

The fact that a large proportion of climate change-induced workers move into the

informal sector in the short and long terms might reinforce the country’s compara-

tive advantage in those less skill-intensive industries, which, if combined with low

innovation, might lead to lower long run growth (Bustos et al. 2020).

Previous work on inequality consequence of climate change typically focuses on

gender, race, or ethnicity dimensions (e.g., Maccini and Yang 2009; Park et al. 2020;

Pham 2022), with a common underlying mechanism being the interaction between

the direct effects of climate anomalies and preexisting gender bias in intrahousehold

resource allocation, or differential access to coping and mitigation strategies due to

socio-economic constraints. I show that temperature effects also vary across age co-

horts and are likely driven by differential costs of switching sectors. The relatively

low productivity and the lack of social welfare system for workers in the informal

economy suggest that climate change may disproportionately affect the welfare of

older populations.

Finally, the paper connects to the broader literature studying the role of agricul-

tural growth in structural transformation. Some scholars argue that labor reallocation

out of agriculture to manufacturing and service results from faster agricultural pro-

ductivity growth that generates demand for non-agricultural goods.12 Other scholars,

however, argue that agricultural growth could lead to different patterns in the context

of small open economies because of specialization according to comparative advan-

12See Kongsamut, Rebelo, and Xie (2001), Gollin, Parente, and Rogerson (2002), and Ngai and Pis-
sarides (2007) for theoretical contributions. Bustos, Caprettini, and Ponticelli (2016) provides empirical
evidence in the context of Brazil.
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tage (Matsuyama 1992). The phenomenon studied here disproportionately impacts

labor productivity in the agricultural sector, leading to different patterns of inter-

sectoral labor reallocation across tradable and non-tradable markets. On the one

hand, these results support the hypothesis that climate change widens the preexist-

ing differences in intersectoral labor productivity, which could help drive structural

transformation (Barrett, Ortiz-Bobea, and Pham 2023). But they also underline the

model simulation-based findings of Nath (2020) that reducing trade barriers may be

critical to mitigating climate impacts in low- and middle-income countries.

The remaining of the paper proceeds as follows. Section 2 presents the theo-

retical model. Section 3 describes the data and provides descriptive patterns of the

temperature-employment relationship. Section 4 details empirical strategies and find-

ings, reports results from a series of robustness checks and other analyses on migra-

tion, education, and gender. Section 5 explores potential mechanisms. Section 6

concludes.

2 A Simple Model of Frictional Labor Reallocation

In this section, I present a simple model of frictional labor reallocation. The model

generates testable predictions for the temperature-sectoral employment share rela-

tionship in small open and closed economies, while also providing an interpretation

of the observed gains in earnings when changing sectors of employment.

2.1 Environment

Endowment. The economy is composed of a unit measure of individuals who live

for two periods. In each period, individuals are endowed with one unit of time and

supply labor inelastically to one of the two sectors: agriculture (indexed 𝑔) and non-

agriculture (indexed 𝑛).13

Working in non-agriculture is associated with a per-period cost that reduces non-

agricultural earnings by a fraction 𝜏 in each period, where 0 < 𝜏 < 1. This cost can be

interpreted as (i) taxes and social security contribution that are specific to (formal)

non-agriculture, (ii) amenity cost, (iii) psycho-social costs associated with, for exam-

ple, the exclusion from informal insurance networks (Munshi and Rosenzweig 2016),

or the net of several of these effects.
13These assumptions are based on the fact that the share of non-employment, which includes inactive

and involuntary unemployed individuals, remains relatively stable over the study period. Furthermore,
as will be shown in the next section, this share is not significantly impacted by temperature changes.
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Following Roy (1951), I assume that individuals are endowed with a bivariate

skill vector {1, 𝜀} that represents the efficiency of their labor in agriculture and non-

agriculture, respectively. In other words, individuals have identical productivity in

agriculture and are only heterogeneous in the non-agricultural sector.14 Furthermore,

I assume that 𝜀 is distributed according to a Pareto distribution where the minimum

of the support is normalized to the value one, 𝐹 (𝜀) = 1−𝜀−𝜃 . The term 𝜃 > 0 controls

the variation in productivity with a lower 𝜃 implying more dispersion in individual

productivity. This distribution assumption buys tractability of the model.

Production. Production in the agricultural and non-agricultural sectors uses labor

services 𝐿𝑠∈{𝑔,𝑛} as the sole-variable input.15 The labor market is competitive. Pro-

ductivity in agriculture and non-agriculture are 𝑍𝑔 and 𝑍𝑛, respectively. The produc-

tion functions in agriculture and non-agriculture are

𝑄𝑔 = 𝑍𝑔𝐺 (𝐿𝑔), 𝐺 (0) = 0, 𝐺′ > 0, 𝐺′′ < 0

𝑄𝑛 = 𝑍𝑛𝐻 (𝐿𝑛), 𝐻 (0) = 0, 𝐻′ > 0, 𝐻′′ < 0
(1)

where 𝐿𝑠 =
∫
Ω𝑠 𝜀𝑠𝑑𝐹 (𝜀), 𝑁𝑠 =

∫
Ω𝑠 𝑑𝐹 (𝜀) denote the number of efficiency units and

the total of workers employed, respectively, in sector 𝑠, with Ω𝑠 representing the set

of individuals employed in sector 𝑠.

Given the competitive labor market structure, firms’ optimization implies that

workers are paid the marginal product of their labor. Let the relative price of agricul-

tural goods in equilibrium be 𝑝, then individual-level earnings in the two sectors are

given by

𝑦𝑔 = 𝑤𝑔 = 𝑝𝑍𝑔𝐺
′(𝐿𝑔)

𝑦𝑛 = 𝜀𝑤𝑛 = 𝜀𝑍𝑛𝐻
′(𝐿𝑛)

(2)

where 𝑤𝑔 and 𝑤𝑛 represent the wages per efficiency unit in agriculture and non-

agriculture, respectively.

14The assumption that non-agriculture is more human capital intensive than agriculture is consistent
with evidence of sorting of high-skilled workers and larger returns to skills in this sector (e.g., Gollin,
Lagakos, and Waugh (2014) and Herrendorf and Schoellman (2018)).

15In other words, land is assumed to be quasi-fixed. This assumption is consistent with evidence of
non-changing cultivated land distribution in Vietnam over the study period (Liu et al. 2020). It also
reflects the agricultural land protection policies in the country, in which the conversion of rice and
agricultural land to other non-agricultural purposes is generally not allowed with very few exemptions
that serve the national or public interests (e.g., Decree No.63/NQ-CP, Decision 124/QD-TTg, Resolution
17/2011/QH13).
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Preferences. All consumers share identical preferences given by

𝑢(𝑐𝑔, 𝑐𝑛) = 𝛼 log(𝑐𝑔 − 𝜁) + (1 − 𝛼) log(𝑐𝑛) (3)

where 𝑐𝑔 and 𝑐𝑛 denote consumption of the agriculture good and the non-agricultural

good, respectively. The parameter 𝜁 represents the subsistence level of agricultural

consumption and satisfies two conditions: (i) 𝑍𝑔 > 𝜁 (the economy’s agriculture is

productive enough to provide at least a subsistence level of agricultural good to all

consumers), and (ii) 𝜁 > 0 (non-homothetic preference assumption where income

elasticity of demand for agricultural good is less than one).

Demand for the two goods by an individual satisfies 𝑐𝑔 = 𝜁+ 𝛼
(1−𝛼) 𝑝 𝑐𝑛. Aggregation

over the unit mass of population yields

𝐶𝑔 = 𝜁 + 𝛼

(1 − 𝛼)𝑝𝐶𝑛 (4)

where the upper case letters denote aggregate consumption.

Workers. Workers are assumed to be initially randomly allocated to each sector and

forced to work there in the first period. At the end of the first period, they make a

switching decision to maximize their earnings in the second period. An individual

with productivity vector {1, 𝜀} solves the problem

max{(1 − 𝜏)𝑤𝑛𝜀, 𝑤𝑔} (5)

Definition of Equilibrium. A competitive equilibrium consists of sectoral choices

and wages per efficiency unit {𝑤𝑔, 𝑤𝑛} such that:

• Firms maximize profits taking wages as given (2)

• Workers optimally choose sector of employment taking wages as given (5)

• Markets clear

Characteristics of Equilibrium. The workers’ problem implies that an individual

with productivity vector {1, 𝜀} works outside of agriculture if and only if (1− 𝜏)𝑤𝑛𝜀 ≥
𝑤𝑔. Thus there exists a single cutoff value 𝜀 that determines which individuals work

in agriculture in the second period.

𝜀 =
𝑤𝑔

(1 − 𝜏)𝑤𝑛

=
𝑝𝑍𝑔𝐺

′(𝐿𝑔)
(1 − 𝜏)𝑍𝑛𝐻

′(𝐿𝑛)
(6)
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The share of workers and efficiency unit of labor in agriculture and non-agriculture

are determined as

𝐿𝑔 = 𝑁𝑔 =

∫ 𝜀

1
𝑑𝐹 (𝜀) = 1 −

[
𝑝𝑍𝑔𝐺

′(𝐿𝑔)
(1 − 𝜏)𝑍𝑛𝐻

′(𝐿𝑛)

]−𝜃

𝐿𝑛 =

∫
𝜀

𝜀𝑑𝐹 (𝜀) = 𝜃

𝜃 − 1

[
𝑝𝑍𝑔𝐺

′(𝐿𝑔)
(1 − 𝜏)𝑍𝑛𝐻

′(𝐿𝑛)

]1−𝜃

𝑁𝑛 =

[
𝑝𝑍𝑔𝐺

′(𝐿𝑔)
(1 − 𝜏)𝑍𝑛𝐻

′(𝐿𝑛)

]−𝜃

(7)

2.2 Theoretical Predictions on the Temperature-Labor Share Relationship

In this section, I analyze the response of agricultural and non-agricultural employ-

ment in general and by age group to changes in extreme temperatures, generating

empirically testable predictions. Extreme temperatures affect sectoral labor realloca-

tion through their effects on sector-specific productivity 𝑍𝑔 and 𝑍𝑛. While the adverse

effect of heat on agricultural productivity is well-documented in the empirical litera-

ture (Schlenker and Roberts 2009), there is a dearth of evidence on the relationship

between heat and non-agricultural productivity from developing countries, although

existing evidence does suggest a negative heat impact on productivity of climate-

exposed industries (Somanathan et al. 2021; LoPalo 2023).

Prediction 1: Small Open Economy. If the economy is sufficiently close to a small

open economy in the absence of trade barriers and extreme temperatures dispropor-

tionately affect agricultural productivity, then

(a) extreme temperatures reduce the employment share of agriculture

(b) extreme temperatures increase the employment share of non-agriculture

(c) the reallocation effect (in magnitude) induced by extreme temperatures is de-

creasing in the cost of working in non-agriculture

Proofs are in Appendix A. Intuitively, when the economy is sufficiently close to

a small open economy, the relative agricultural price is exogenously determined by

the world market 𝑝.16 Changes in relative labor productivity loss caused by extreme

temperatures induce workers to move away from the less productive sector to rela-

tively more productive sectors. This happens differently by worker cohort and sector

16An implicit assumption is that local climate-related shocks are worse than elsewhere. If, on the
other hand, climate-related shocks disproportionately affect agricultural production in other exporting
economies, this might result in increased demand for the current economy’s agricultural goods. In that
case, the relative agricultural price would rise, leading to an increase in agricultural labor share.
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of in-migration if labor market frictions vary among cohorts and sectors. For ex-

ample, age-based discrimination practices in the hiring and firing processes among

low-skilled labor-intensive employment in the formal non-agricultural sector might

prevent the reallocation of older agricultural workers to this sector.17

Prediction 2: Closed Economy. If the economy is sufficiently closed and extreme

temperatures disproportionately affect agricultural productivity, then under non-homothetic

preference assumption

(a) extreme temperatures increase the employment share of agriculture

(b) extreme temperatures decrease the employment share of non-agriculture

(c) the reallocation effect (in magnitude) induced by extreme temperatures is de-

creasing in the cost of working in non-agriculture

Proofs are in Appendix A. When the economy is sufficiently closed, the relative

agricultural price 𝑝 is endogenously determined by local supply and demand. As

agriculture constitutes a substantial share of the local economy and provides an im-

portant source of income for a large share of the population, negative shocks to agri-

cultural productivity results in a reduction in income. When the income elasticity

of demand for the agricultural good is less than one, there is a shift towards con-

sumption of agricultural goods–the mechanism highlighted in previous literature as a

potential driver of structural change (e.g., Kongsamut, Rebelo, and Xie 2001; Gollin,

Parente, and Rogerson 2002). This channel also appears consistent with findings by

Liu, Shamdasani, and Taraz (2023), who found the agricultural labor share increases

in response to rising temperatures in India.18

17In Vietnam, some age-based discriminatory practices have been common, especially among
low-skilled employment. On leading job sites such as vn.indeed.com, it is not difficult to find job
advertisements with the keyword “lao động phổ thông” (“low-skilled workers” in Vietnamese) that
restrict applications to a specific age range (e.g., 18-35, 18-40). Despite no comprehensive reports on
age-based discrimination in labor and employment, existing studies conducted by the Ministry of Labor,
Invalids and Social Affairs found that employers prefer recruiting young workers (See, for example,
https://www.ilo.org/hanoi/Informationresources/Publicinformation/newsitems/WCMS_647834/lang–
en/index.htm). According to a survey of 64 enterprises, the General Confederation of Labor
documented that employers tend to terminate contracts with older workers to cut down wages
and social security contribution, which is a function of their base salary and seniority pay (
https://ldldsoctrang.soctrang.gov.vn/tin-hoat-ong/-/asset_publisher/s5406b90MKP4/content/van-e-
sa-thai-lao-ong-tren-35-tuoi?).

18Alternatively, without non-homothetic preferences, a sub-unit elasticity of substitution across agri-
cultural and non-agricultural goods may also lead to a shift of employment from non-agriculture to
agriculture if the latter incurs a relatively larger productivity loss in magnitude caused by extreme tem-
peratures. This mechanism is formalized by Ngai and Pissarides (2007).
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2.3 Observed Gains among Switchers

The theoretical predictions involve estimating the cost of working in non-agriculture.

In this section, I show that this cost can be inferred from the observed gains in labor

earnings among the sample of workers who change sectors of employment.

For simplicity, let us assume that movement only happens from agriculture to non-

agriculture, which is the dominant switching direction for individuals who do switch

(Herrendorf and Schoellman 2018; Hamory et al. 2021).19 Define the gains from

switching out of agriculture for an individual worker as the difference in log earnings

between agriculture and non-agriculture

ind. gains =
[
log 𝑍𝑛 + log𝐻′(𝐿𝑛) − log 𝑍𝑔 − log𝐺′(𝐿𝑔) − log 𝑝

]
+ [log(𝜀) − log(1)]

(8)

The first term is the benefit of working in the non-agricultural sector, relative to the

agricultural sector. The second term reflects the relative productivity advantage that

the individual enjoys in non-agriculture, reflecting selection on comparative advan-

tage. Averaging across all switchers and applying equation (6) with properties of

the Pareto distribution give us the average gains when moving from agriculture to

non-agriculture20

average gains among switchers =
1
𝜃
− log(1 − 𝜏) (9)

Because the initial allocation of workers is random (and might thus be not opti-

mal), the average gains in earnings also capture the composition of individuals who

switch out of agriculture in equilibrium (selection according to comparative advan-

tage). If, instead, workers are assumed to self-select in the first period and only switch

at the margin in the second period because of a change in relative sectoral produc-

19When the analysis is restricted to this specific direction, one can further introduce a fixed cost that
individuals incur when a change in sector of employment (agriculture to non-agriculture) takes place.
The gains in earnings then reflect two types of costs: a per-period cost of working in non-agriculture
and a one-off switching cost to this sector. All the qualitative conclusions remain the same.

20In particular, the log transformation of a Pareto distribution is distributed exponentially with pa-
rameter 𝜃. The average gains among switchers are

average gains =
[
log 𝑍𝑛 + log𝐻′ (𝐿𝑛) − log 𝑍𝑔 − log𝐺′ (𝐿𝑔) − log 𝑝

]
+
∫
𝜀

log(𝜀) 𝑓 (𝜀 |E ≥ 𝜀)𝑑𝜀

=
[
log 𝑍𝑛 + log𝐻′ (𝐿𝑛) − log 𝑍𝑔 − log𝐺′ (𝐿𝑔) − log 𝑝 + log(𝜀)

]
+
∫
𝜀

log
( 𝜀
𝜀

)
𝑓 (𝜀 |E ≥ 𝜀)𝑑𝜀

= − log(1 − 𝜏) + 1
𝜃
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tivity (e.g., induced by extreme temperatures), then any individual who is observed

to move must have productivity approximately equal to the threshold 𝜀.21 In other

words, the marginal switcher assumption further implies that

average gains among switchers ≈ − log(1 − 𝜏) (10)

Taken together, under these assumptions, equations (9) and (10) both suggest

that if the observed gains from working in non-agriculture relative to agriculture

among workers who changed employment sectors are small, then the costs must be

small and vice versa.

3 Data and Descriptive Patterns of Temperature and Employment

3.1 Data and Measurement

In this section, I briefly discuss the main data sources and variables of interest. For

detailed variable definition and data construction, see Appendix B. The main sources

of data include the Vietnamese household surveys, the population and formal firm

census, and the global climate and weather reanalysis ERA5 database.

Employment Data. I use the 5% random sample of the 1989 population census,

the Vietnam Living Standards Surveys 1993-1998, the Vietnam Household Living

Standards Surveys 2002-2018 to construct measures of the sectoral composition of

employment and sectoral hours of work. The surveys are nationally and provincially

representative.22 Although the household survey is a repeated cross-sectional survey,

it contains a rotating panel sub-component that tracks individuals over a period of

up to four years, which allows me to analyze individual transition across sectors over

a longer time than is usually feasible.23 The analysis sample includes workers with

21Lagakos et al. (2020) and Schoellman (2020) discuss these points in the rural-urban migration
setting.

22The earliest household surveys in 1990s are not representative at the province level, I re-visit this
point in the robustness checks section. The surveys use households as sampling units and define house-
hold membership on the basis of physical presence. Individuals must stay and eat in the household
for at least six months during the 12-month reference period, and contribute to collective income and
expenses to be considered members. This requirement means that individuals who have moved away
for work or school (e.g., migrants) are not considered household members. Considering an individual
as a seasonal migrant if they left the household for work during the year but are still considered as a
household member (as in Brauw and Harigaya (2007)), then more than 96% of household members
staying in households during the last 12 months also suggests a low seasonal migration rate of 4%.

23More recent effort has been made to collect longitudinal individual data to study employment tran-
sitions in developing countries, for example, in Indonesia and Kenya (Hamory et al. 2021). In docu-
menting the relationship between labor market dynamics and economic development, Donovan, Lu, and
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available information on industry of employment, as well as types of employers for

household members age 24-64. I focus on this age range to capture working-age

individuals with completed education.24

The key variables of interest are the sector in which an individual was working

during the reference period and their working hours. These variables are constructed

using data from the employment modules of the census, which covers industries of

the most time-consuming job, as well as of the household survey, which covers hours

worked, industries, and types of employer of the two most time-consuming jobs.25 For

each job, an individual is asked whether he or she works for his or her own house-

hold or for other households, collectives, state-owned enterprises, private domestic

enterprises, or foreign-invested enterprises. Following McCaig and Pavcnik (2018), I

consider an individual as working in the informal sector if he or she is self-employed

or works as an employee in household businesses. I also consider working in col-

lectives or cooperatives as informal in order to make the definition consistent over a

longer time period, although this should not affect the analysis much.26

Note that informality can broadly be defined either from the worker side or from

the employer side. According to GSO and ILO (2018), informality on the worker

side implies that workers do not have social security benefits and a labor contract

with a minimum term of three months (intensive margin). On the employer side,

informality implies that firms do not register with the government (extensive margin).

A cross-check whenever possible suggests that the notion of informality employed in

Schoellman (2023) construct a dataset of gross labor market flows of individuals of up to 6-9 months
for a sample of 45 countries.

24With this restriction, this paper likely overlooks a potentially important margin: the school-to-work
transition of young individuals.

25Data on secondary job are not available in 2002. Since 2010, VHLSS asks if the individual also works
a third job for wage. Approximately 2.7% of the working population answered yes to this question.
For a majority of these workers (75%), agriculture is their primary sector, followed by construction.
Information regarding hours worked, earnings, and industries are not available for the third job and
beyond.

26Before the “Doi Moi” reform in 1986, Vietnamese economy was centrally-planned and there was no
market-based price mechanism. Without an enterprise law, all industrial producers and traders were
owned by the government. Agriculture was required by the state to operate in the form of village-level
collectives (Nguyen, Luu, and Trinh 2016). Since the late 1980s and early 1990s, however, the for-
mation of collectives has been voluntary with households essentially exchanging labor during plowing,
planting, and harvesting seasons (Raymond 2008). Furthermore, while it is not officially stated in the
first Enterprise Law enacted in 2000, the Cooperative Law of 2012 emphasizes that a collective or a
cooperative is not considered a type of enterprise. As such, the notion of collectives resembles that of
household businesses, which is the main source of informal employment used by McCaig and Pavcnik
(2018). Employment in cooperatives and collectives since 2000 contributes to less than 1% of the total
employment of adults 24-64 years old.
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this paper is highly correlated with the definition of informality from the worker

side, with a Pearson correlation coefficient of approximately 0.9. However, while

only a small fraction of formal workers labor in informal firms, a nontrivial 14% of

workers in formal firms does not have social security benefits and a labor contract

and most of them work in medium tech manufacturing industries, less knowledge-

intensive service industries, mining and quarrying, and construction.27 If climate

change induces reallocation of workers into temporary jobs, as what Colmer (2021)

found in the case of short-run increase in average temperature, then the fact that

a nontrivial share of workers in formal firms are informally employed suggests this

paper likely underestimates the role of the intensive margin of informality in the

Vietnamese economy in response to climate change.

Historical Weather Data. The main weather data are from ERA5 reanalysis, which

combines model data with observations from across the world into a globally com-

plete and consistent dataset (Hersbach et al. 2020) and contains hourly atmospheric

variables for the period on 0.25◦× 0.25◦grid (approximately 30 km at the equator).

Reanalysis data provide a consistent estimate of atmospheric parameters over time

and space (Auffhammer et al. 2013), and have been increasingly used in the liter-

ature, especially in developing countries where the quality and quantity of weather

data are limited (Ortiz-Bobea 2021). The variables I focus on are grid-level daily

mean wet-bulb temperature, precipitation, and wind speed over the study period.

The decision to use daily mean values of temperature instead of maxima stems from

the fact that reanalysis data, which are outputs from climate model prediction, are

generally sensitive to extreme values. While most reanalysis datasets agree on the

mean value of weather variables across space, they are not in full agreement about

the timing or magnitude of deviations from this mean (Auffhammer et al. 2013).28

Grid-level weather data are then transformed to province-level weather data by

taking weighted average of the four nearest grid points to the geographic centroid

of the first administrative level–a province, with weights being the inverse distance.

Because there have been changes in administrative boundaries in Vietnam over the

study period, and most of the changes happens in the case of splitting, I use the

27See Appendix B2 for a breakdown of the share of informal workers in formal firms by industry.
Industries are ranked following the Statistical Classification of Economic Activities in the European
Community. For details, see Annex 3 – High-tech Aggregation by Statistical Classification of Economic
Activities in the European Community (NACE Rev.2)

28In settings where station-level data are of good quality and available at high spatio-temporal density,
maximum or minimum values of weather variables are commonly used (e.g., Graff Zivin and Neidell
(2014)).
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original administrative units in 1993, which gives a consistent sample of 52 provinces

over the study period.29

Other Data. In addition to employment and weather data, I use the Enterprise Cen-

sus, which covers all formal firms in Vietnam during the period 2002-2016 to con-

struct a firm-level and a province-level longitudinal dataset of labor productivity, as

proxied by revenue per worker for the formal non-agricultural sector. Finally, I com-

pile a dataset of province-level migration rates, agricultural cultivated area and crop

yields from statistical yearbook.

Merging Employment Data with Weather Data. The employment data are con-

structed on an individual-level basis. Employment variables including sector of em-

ployment and hours of work are recorded for the 12-month reference period prior to

the interview day. Individuals from different households in the same province may

not have same exposure to the weather distribution during their reference period be-

cause the survey is typically conducted in different months throughout the year for

each province. Given that more than 96% of household members stay in the same

province over the full reference period, I assume that individual 𝑗 surveyed in month

𝑚 of year 𝑡 in province 𝑝 has been exposed to the weather distribution of province 𝑝

during the 12 full months prior to 𝑚.30 Individual-year employment data and weather

data are then collapsed to province-age group-year level (or province-year level, de-

pending on the analysis) by computing the weighted mean, where weights are the

survey sampling weights.

3.2 Descriptive Patterns of Temperature and Sectoral Labor Share

Climate change refers to an alteration of climate that persists for an extended period.

While much of the public attention has been focused on the accelerating increase in

global mean air temperature of about 1◦C or so over the last four decades (Hsiang

and Kopp 2018), there was also a doubling in the frequency of dangerous combina-

tions of heat and humidity across the globe (Raymond, Matthews, and Horton 2020).

One metric closely related to the combined effects of heat and humidity is wet-bulb

temperature. At the same level of heat, a place with dry air has a lower wet-bulb

temperature and feels cooler compared to a place with humid air, because the former

29An exception is the then Ha Tay province, which was merged into Hanoi city in 2008, and therefore
I use the boundary of the new Ha Noi for consistency.

30For example, the individual 𝑗 surveyed in January of 2010 in province 𝑝 is assumed to be exposed
to the weather distribution of province 𝑝 from January to December of 2009.
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allows quicker evaporation of sweat in order to avoid overheating, the process that

negatively affects human health and productivity. Climate models have consistently

predicted an increase in wet-bulb temperature levels, which can exceed the 35◦C

“survival” threshold in some places including, but not limited to, the tropical regions

(Sherwood and Huber 2010; Zhang, Held, and Fueglistaler 2021), where a substan-

tial share of the global population lives in poor conditions with limited adaptation

capacity (IPCC 2022).

Vietnam is characterized by different climatic conditions that vary greatly be-

tween regions due to its diverse topography, long latitude, and influences from the

East Sea. According to Beck et al. (2018), the country can be classified into seven

climatic regions including tropical-rain forest, tropical-monsoon, tropical-Savannah,

arid-steppe-hot, temperate-dry winter-hot summer, temperate-dry winter-warm sum-

mer, and temperate-no dry season-hot summer. These roughly correspond to the

country’s seven economic regions.31 At the same level of dry-bulb temperature, there

is significant variation in the level of humidity across provinces, which leads to a

wide range of wet-bulb temperatures. For example, when air temperature falls be-

tween 27-30 ◦C, WBT ranges from a cool 18◦C to a hot 28◦C, which potentially have

very different effects on human health and productivity (Figure 1). In what follows,

I rely on the measure of wet-bulb temperatures and refer to it as temperature, unless

otherwise stated.

Figure 1: Dry-bulb and Wet-bulb Temperatures (◦C), 1980-2020

Notes: Each point represents the mean temperatures of a day of a province during 1980-2020.

Figure 2 shows a shift in the province-level temperature distribution and agricul-

tural employment shares over time. The left panel documents temperatures not only
31There are 5-13 provinces per region.
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increased in mean level over time, but also became more variable with more extreme

hot and cold days. The right panel shows a steady decrease in agricultural labor

shares across provinces.

Figure 2: Distribution of Wet-bulb Temperatures and Agricultural Labor Share across
Provinces

I capture the change in temperature distribution over time using a statistical mea-

sure: Kullback-Leibler divergence (KLD, henceforth). A KLD value of zero implies

two distributions are identical, and a greater value implies more difference between

the two distributions.32 I then decompose the overall difference between two dis-

tributions into the location and shape components. Location difference arises when

the distribution of daily temperature in the recent period differs from the distribution

in the reference period because of a general (rightward) shift that affects all points

along the distribution to the same extent. General warming would manifest as a sig-

nificantly positive location difference. Shape difference, on the other hand, refers to a

change in the structure (pattern) of the distribution conditional on location, for exam-

ple, fewer mild days and more extreme days that lead to a more “polarization” of the

temperature distribution in recent years. An increased risk of extreme temperatures

would appear as a significantly positive shape difference.33

32For a review of different measures and computation in Stata, see Jann (2021).
33Appendix Figure D1 illustrates the difference between location and shape components of two

provinces that experience temperature rises with similar overall divergence in temperature distribu-
tion and increase in mean temperature but different extent of shape and location effects over the period
1992-2018. When assuming similar locations of the recent and reference distributions, the shape of the
recent distribution is similar to the reference distribution in Province A. In Province B, although less
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Distinguishing location and shape differences is likely important to assess the ef-

fect of temperature change. Although a change in either location or shape of the

temperature distribution can lead to a similar increase in the mean, the latter is as-

sociated with more variation and thus is generally less predictable, leaving less room

for adaptation. The ecology literature has emphasized greater risks and effects that

changes in temperature variation, relative to changes in temperature mean, may pose

to ecological systems (Vasseur et al. 2014; Turner et al. 2020). This is particularly con-

cerning given that increased temperature variability has been consistently projected

to be more prevalent in poor tropical countries in the near future (Bathiany et al.

2018).

Panel A of Figure 3 presents the change in temperature distribution in Vietnamese

provinces over two periods: 1992-2008 and 2009-2018 using the measure of shape

difference. Temperature change is heterogeneous across the country, with the Red

River Delta, central coast and the southeast regions experiencing the most change.

Correspondingly, these regions also observe a relatively larger decrease in the aver-

age agricultural employment share and relatively larger increase in living standards,

as proxied by household consumption, between the two periods. These relationships

appear stronger in areas close to major seaports. Panel B (left) confirms a clear nega-

tive association between the shape difference measure and the change in agricultural

employment share at the province level. The right panel likewise plots the negative

relationship between a more conventional measure of extreme temperatures (degree

days above 27◦C) and sectoral employment share change.

A key feature of the evolution of sectoral employment shares in Vietnam is the

stark difference in the rate of labor reallocation across age cohorts. Panel A of Figure

4 shows the share of workers in each sector for four 4-year intervals from 1989 to

2018 and for five 4-year age intervals. As seen, those ages 24-28 are 40% less likely

to work in agriculture in 2014-2018 than people in that age range were in 1989-

1993. The corresponding figure for the group of older workers (age 56-60) is only

20%. Younger cohorts also enter the labor market more in the formal non-agricultural

sector. For informal non-agriculture, in contrast, the change in employment share

largely follows economy-wide trends in which individuals of all birth cohorts move

into this sector over time.

Figure 4 Panel B plots the relationship between changes in temperature distribu-

tion and changes in sectoral employment share for three age groups: 24-39, 40-54,

precisely estimated, there appears to be a significant change in the shape of the distribution with fewer
mid-range days and and more days on the right tail.
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Figure 3: Change in Temperature Distribution and Labor Shares 1992-2018

Panel A: Shape Difference (Left), Decrease in Agricultural Labor Share (Middle), and
Increase in Household Consumption (Right)

Panel B: Relationship between Temperature and Agricultural Labor Share

Notes: In panel A, darker color denotes larger magnitude. Panel B shows the line of best fit from the regression
of change in sectoral employment shares on change in temperature distribution, as proxied by shape difference
(left) and change in extreme temperatures (right), with each circle representing a province. The size of the circle is
proportional to sampling weights.

and 55-64. The temperature change-employment share relationship patterns mirror

that of the nationwide changes in sectoral employment shares by age group. In par-

ticular, the association between temperature change and agricultural labor share is

stronger for the younger group.

4 Empirical Analysis

In what follows, I provide empirical evidence on the plausibly causal effects of tem-

perature change on structural transformation in Vietnam. The basic correlation in

the data reported in the previous section implies that provinces where there were
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Figure 4: Change in Temperature Distribution and Labor Shares by Age Group

Panel A: Sectoral Labor Shares by Age Group

Panel B: Relationship between Temperature and Agricultural Labor Share, by Age Group

Notes: Panel A plots the share of workers in each sector for four 4-year intervals from 1989 to 2018 and for five
4-year age intervals. Change in agricultural and formal employment share largely follows younger cohorts entering
the labor market more into this sector. Change in informal employment share is largely due to economy-wide trends
in which individuals of all birth cohorts move into this sector over time. Panel B shows the line of best fit from the
regression of change in sectoral employment shares on change in wet-bulb temperature distribution, as proxied by
shape difference across age groups, with each circle representing a province. The size of the circle is proportional to
sampling weights.

larger change in the temperature distribution (particularly extreme temperatures) ex-

perienced a reduction in agricultural labor share while non-agricultural employment

expanded, and such a correlation is prevalent for areas close to the major seaports,

as well as for younger workers. These findings are consistent with those predicted

by the model. However, these correlations are not informative about the direction of

causality. For example, changes in demographic characteristics, including educational

attainment, that are correlated over time with rising temperatures might conflate the
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temperature effects.34

4.1 Empirical Strategy

To examine the causal effect of temperature change on sectoral labor allocation and

other outcomes, I employ two different approaches, each of which relies on a different

identification strategy and source of variation in the weather distribution.

Panel Approach. The first approach exploits year-to-year variation in weather dis-

tribution within geographic and demographic cells. I estimate the regression of the

form:

𝑦𝑎𝑝𝑟𝑡 = 𝑓 (𝑎,WBT𝑝𝑡 ) + 𝑔(𝑎,R𝑝𝑡 ) + 𝛾𝑎𝑝 + 𝛾𝑎𝑟𝑡 + 𝜖𝑎𝑝𝑡 (11)

where 𝑦𝑎𝑝𝑟𝑡 is an outcome of age group 𝑎 ∈ {24 − 39, 40 − 54, 55 − 64} of province

𝑝 in region 𝑟 in year 𝑡. The outcomes include employment shares in agriculture,

informal non-agriculture, and formal non-agriculture for the main job. The term R𝑝𝑡

represents a vector of weather variables other than temperature in province 𝑝 in the

reference period relative to year 𝑡, including second-degree polynomials of rainfall

and episodes of high speed wind, which is allowed to have differential effects by age

group.35

Equation (11) includes a full set of province-by-age group fixed effects 𝛾𝑎𝑝, which

absorb all unobserved, province-specific time-invariant determinants of sectoral em-

ployment for each age group. The equation also includes region-by-year fixed effects

that are allowed to vary across the age groups 𝛾𝑎𝑟𝑡 . Across all estimations with equa-

tion (11), I weight the results by age group-specific population so that the coefficients

correspond to an average person in the relevant age category.36 I cluster standard er-

rors at the province level to allow for potential serial correlation over time within

each province (52 provinces). I also report Conley standard errors that allow for spa-

tial correlation up to 150 km and serial correlation up to five lags in the error term

34Porzio, Rossi, and Santangelo (2022) show that the particular role of new cohorts in labor realloca-
tion out of agriculture ties to the expansion of education that equips younger cohorts with skills more
valued outside of agriculture.

35A day is considered having high speed wind if its maximum wind speed is above 10.8 m/s, which
corresponds to the Beaufort scale level 6 (strong breeze). According to the INFORM risk index database,
the country has been facing high natural hazard risks such as floods, followed by cyclones.

36Weights are constructed based on survey sampling weights so that they sum to one for each survey
year in the sample, across all observations. Specifically, the weight for an observation of age group 𝑎

in province 𝑝 in year 𝑡 is 𝑤𝑎𝑝𝑡 =

∑
𝑖∈𝑎 𝑠𝑤𝑖𝑝𝑡∑
𝑝 𝑠𝑤𝑖𝑝𝑡

where 𝑠𝑤𝑖 𝑝𝑡 is the sampling weights for each individual

observation 𝑖 available in the survey year 𝑡.
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(Conley 1999).37

The focus of equation (11) is on the effect of temperature on sectoral employment,

represented by the response function 𝑓 (𝑎,WBT𝑝𝑡 ) that varies by age group. In the

most parsimonious model, I define 𝑓 (𝑎,WBT𝑝𝑡 ) as a piece-wise linear function:

𝑓 (𝑎,WBT𝑝𝑡 ) =


∑

𝑎

∑365
𝑑=1 𝛽𝑎9(9 − WBT𝑑𝑝𝑡 )I𝑎 if 0 ≤ WBT < 9

0 if 9 ≤ WBT < 27∑
𝑎

∑365
𝑑=1 𝛽𝑎27(WBT𝑑𝑝𝑡 − 27)I𝑎 if WBT ≥ 27

(12)

With this function, 𝛽𝑎9 and 𝛽𝑎27 can be interpreted as the effect of one addi-

tional degree day below 9◦C (DD9) or above 27◦C (DD27), respectively, on sectoral

employment shares of age group 𝑎 over the 12-month reference period.38 The 9◦C-

27◦C range captures the middle 95% of the daily wet-bulb temperature distribution

in the sample during the study period (Appendix Figure D2). The use of this func-

tion captures an agreement in the ergonomic literature that human performance loss

from temperature is non-linear, with little or no loss associated with temperature in-

creases in moderate temperature regimes and large loss associated with temperature

increases in high temperature regimes. For example, findings from three meta anal-

yses that human performance drops significantly once wet-bulb globe temperature is

above 27◦C (Hsiang 2010).

I also estimate a model where 𝑓 (.) is represented by cumulative temperature bins,

degree day bins, and fourth order polynomials. These models provide sufficient flex-

ibility to capture important non-linearity, as well as being relatively parsimonious

with low demand on the data. The results from these alternative functional forms of

temperature are similar to the baseline results.39

Identification Assumption. The validity of estimates based on equation (11) relies

on the assumption that E
[
𝑓
(
𝑎,WBT𝑝𝑡

)
𝜖𝑎𝑝𝑟𝑡 |𝑔(𝑎,R𝑝𝑡 ), 𝛾𝑎𝑝, 𝛾𝑎𝑟𝑡

]
= 0. By condition-

ing on other weather variables, province-by age group fixed effects and region-by-age

group-by-year fixed effects, these coefficients are identified from province-age group-

specific deviations in temperature distribution about its averages after controlling for

shocks that could affect different age groups of different regions to different extents.

37The choice of five lags is arbitrary. Results are robust to other choices of lags. I implement Conley
standard errors in Stata using the module that allows weighting developed by Colella et al. (2019).

38For example, if a given province-year-age group experienced two days over 27◦C, one at 28◦C and
the other at 30◦C, its value of degree day above 27◦C would be 4 (i.e., 1 + 3).

39See Appendix C1 for the construction of these measures and the set of results.
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The inclusion of these fixed effects are important for the following reasons. First,

it addresses the concern about age group differentiated differences in educational

attainment, in particular, the common trend in both educational attainment and in

temperature, where the former is correlated with age, might conflate an education ef-

fect with a temperature effect. Second, it controls for time-varying differences in the

dependent variable that are common across provinces within age groups in a region,

for example, regional economic development policy that aims to boost industrial sec-

tor, generating demand for (formal) non-agricultural labor, especially young workers,

which might lead to an increase in non-agricultural employment shares in the absence

of temperature change. It also addresses the case in which the non-monetary value of

working in non-agriculture, especially formal non-agriculture, might grow differently

such that at any given point in time, the younger cohorts are less likely working in

agriculture in regions when temperature increases anyway.40 The identifying varia-

tion is assumed to be orthogonal to unobserved determinants of sectoral employment

in each age group-province cell.41

Long Differences Approach. The second approach exploits variation in the long-

term change in temperature and thus the estimates can be interpreted as the long-run

responses to climate change. I follow Burke and Emerick (2016) and estimate a long

differences regression of the following form:

Δ𝑦𝑎𝑝𝑟 = 𝑓LD(𝑎,ΔWBT𝑝) + 𝑔LD(𝑎,ΔR𝑝) + 𝛾𝑎𝑟 + 𝜖𝑎𝑝𝑟 (13)

where Δ𝑦𝑎𝑝𝑟 represents the change in sectoral employment shares of age group 𝑎

of province 𝑝 between two sub-periods. The shares in each period are calculated

as the average of the shares in each survey waves during that period.42 The term

ΔWBT𝑝 denotes change in wet-bulb temperature distribution. As discussed, the effect

of temperature change might be conflated with that of precipitation or other weather

events, which I address by including in ΔR𝑝 change in precipitation and its squared, as

40Examples of non-monetary value include flexible work schedules, paid leave, vacation.
41A concern with the use of multiple fixed effects is that they absorb a significant amount of weather

variance. Appendix Table D1 shows that even with these set of fixed effects, the remaining variation in
weather variables is substantial. In addition, as shown in Appendix C1, the following results are robust
to alternative specifications in which different set of fixed effects is employed. In Section 4.3, I also
explore the robustness of the results to inclusion of time-varying demographic characteristics, including
educational attainment.

42For example, to compare 1992-2008 and 2009-2018, the first sub-period comprises of six waves
of household surveys 1992/1993, 1998, 2002, 2004, 2006, and 2008, whereas the second sub-period
comprises of five waves of household surveys 2010, 2012, 2014, 2016, 2018.
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well as number of days with high wind speeds. Equation (13) also includes region-by-

age group fixed effects 𝛾𝑎𝑟 , which controls for any unobserved trends at the climatic

or economic region level that vary by age group. I report standard errors clustered at

the province level, as well as Conley standard errors that allow for spatial correlation

up to 150 km.43

I estimate two specifications of equation (13). The first specification uses the

measures of KLD location and shape differences, which are calculated using the full

12-month temperature distribution before the average interview timing during each

sub-period (e.g., 1992-2008 and 2009-2018), to proxy for ΔWBT𝑝. In other words, all

individuals (and thus all age groups) in the same province are assumed to experience

the same weather distribution, regardless of their interview timing. Because the KLD

measures reflect the difference between two probability distributions, the decision

to use province-specific reference year instead of individual-specific reference year

according to interview timing is to correct for bias in distribution changes that are

mechanically driven by changes in interview timing. As long as the average individual

in each province shares similar interview timing, the coefficients on KLD shape and

location are reflective of the average effects of province-level temperature change on

province-level sectoral employment shares. As seen in Appendix Figure D3, in most

provinces, the average interview was completed between July-August, which supports

this interpretation.

Although KLD measure is useful to proxy for change in the temperature distribu-

tion over an extended period of time, they are not without drawbacks: the measure

is difficult to interpret, and is not a metric.44 To facilitate a comparison between the

coefficients estimated using long-term change in climate and those estimated using

short-term weather variation, I estimate equation (13) with the temperature response

function being defined as:

𝑓LD(𝑎,ΔWBT𝑝) =


∑

𝑎 𝛽𝑎9,LDΔ(9 − WBT𝑝𝑡 )I𝑎 if 0 ≤ WBT < 9

0 if 9 ≤ WBT < 27∑
𝑎 𝛽𝑎27,LDΔ(WBT𝑝𝑡 − 27)I𝑎 if WBT ≥ 27

(14)

43I do not find any evidence of spatial correlation in residuals from the Moran test conducted after
estimating equation (13) for each outcome (and age group) separately. As seen below, the two standard
errors are pretty similar in magnitude. In some cases, the Conley standard errors are smaller than the
corresponding ones clustered at the province level.

44Specifically, KLD does not satisfy symmetry and triangle inequality (Amari 2016), which makes the
year-to-year interpretation unwarranted.
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where I is an indicator function. In words, the function represents the effect of change

in extreme temperatures: the difference in the average amount of degree days lower

than 9◦C and higher than 27◦C wet-bulb temperature between any two periods. This

temperature measure is constructed using the survey reference period, similar to the

panel approach, and thus, the results can be directly compared.

Identification Assumption. The identification comes from within-region variation

in changes in temperature and weather extreme between the two periods, which re-

moves the effect of any time-invariant omitted variables at the province-age group

level while also eliminating concerns over time-trending unobservables at the region

level. Conditional on this assumption, the coefficient on temperature variables cap-

tures the causal effect of long-term change in the temperature distribution on sectoral

employment allocation.

4.2 Empirical Results

4.2.1 Panel Approach

Average Temperature Effects. Figure 5 presents the results from estimating a vari-

ant of equation (11) in which the response functions 𝑓 (.) and 𝑔(.) are not specific

to any age group. As seen, cold temperatures do not affect sectoral labor shares.

One standard deviation increase in degree days above 27◦C, however, decreases the

provincial-level employment share in agriculture by roughly 0.05 points (p-value <

0.01), which amounts to approximately 10% of the outcome mean. The correspond-

ing effects on formal and informal non-agricultural labor shares are 0.02 and 0.03

points, respectively (roughly 11-14% of the corresponding outcome means). These

effects are statistically significant at the 5% level when standard errors are clustered

at the province level and account for spatial and temporal correlation. Because there

is no significant change in the share of inactive and unemployed workers, these find-

ings do not reflect a labor supply effect, but a labor reallocation effect.

Appendix Table C1 presents the results from the full model, suggesting a non-

linear impact of precipitation on labor allocation. The impacts are of expected signs

and smaller magnitude compared to hot temperatures, with increasing precipitation

being associated with a decrease in the agricultural labor share and increases in the

non-agricultural labor shares. These precipitation effects, however, are less precisely

estimated. In what follows, I omit weather variables other than temperatures from

the discussion.

To have a better understanding of which industry climate-induced migrants move
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into, I classify non-agricultural employment into three main groups: less, medium,

and high skill-intensive industries.45 This further breakdown of the destination sec-

tor suggests that roughly 75% of the labor reallocation induced by hot temperatures

is into less skill-intensive industries (Appendix Table D2), including low-tech manu-

facturing (e.g., manufacture of food products and beverage, textile and apparel), less

knowledge-intensive services (e.g., wholesale and retail, transport, accommodation

and food services), construction and mining.

Figure 5: Wet-bulb Temperature and Sectoral Labor Share

Results from Panel Approach with Degree Days

Notes: This figure presents the effects (as point change) of 1 SD increase in degree days with wet-bulb temperature
above 27◦C (DD27), or below 9◦C (DD9) on sectoral labor shares. Estimates obtained from a variant of equation
(11) in which the response functions 𝑓 (.) and 𝑔 (.) are not specific to any age group. Unit of analysis is province-age
group-year. All regressions control for the second-order polynomials of precipitation, number of days with high wind
speeds during the 12-month exposure. Robust standard errors clustered at the province level and Conley standard
errors that allow for spatial correlation up to 150 km and serial correlation up to five lags are reported. Province
distances are computed from province geographic centroids. All regressions use sampling weights. All regressions
include sampling weights.

In Appendix Figures C5 and C6, I present additional results with the temperature

functions being represented by cumulative temperature bins, degree day bins, and

fourth-order polynomials. Across these alternative functional forms, the results are

45Industries are ranked following the Statistical Classification of Economic Activities in the Euro-
pean Community. Less skill-intensive industries include those classified as low-tech manufacturing,
less knowledge-intensive services, construction and mining; medium skill-intensive industries include
those classified as medium-tech manufacturing and public utilities; high skill-intensive industries in-
clude those classified as high-tech manufacturing and knowledge-intensive services according to the
Statistical Classification of Economic Activities in the European Community. The mean educational at-
tainment of workers in each industry is presented in Appendix Table B3. For details, see Annex 3 –
High-tech Aggregation by Statistical Classification of Economic Activities in the European Community
(NACE Rev.2)
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similar to those obtained from the parsimonious baseline model: all of the labor

reallocation effects are driven by the higher end of the temperature distribution–the

level above approximately 27◦C.

Heterogeneous Effects by Age Group. Figure 6 shows the effects of temperatures

on three group of workers, which are estimated from equation (11). Cold tempera-

tures do not affect sectoral allocation of any group. Younger workers are less likely to

work in agriculture in response to hot temperatures: one standard deviation increase

in degree days above 27◦C wet-bulb temperature decreases agricultural labor share

for workers age 24-39 by roughly 0.06 points. The corresponding effect for workers

age 40-54 is 0.04 points. The hot temperature impact on older workers is less pre-

cisely estimated, with the near-zero point estimate suggesting that they are virtually

not affected. Correspondingly, the two younger groups also experience significant in-

creases in the formal non-agricultural employment shares, with suggestive evidence

of the largest effect among the youngest group. Turning to informal non-agricultural

employment, there is no statistical difference in the temperature effects across age

groups.

Figure 6: Wet-bulb Temperature and Sectoral Labor Share by Age Group

Results from Panel Approach with Degree Days

Notes: This figure presents the effects (as point change) of 1 SD increase in degree days with wet-bulb temperature
above 27◦C (DD27), or below 9◦C (DD9) on sectoral labor shares of different age groups. Estimates obtained from
equation (11). p-values from the F-test of significant age cohort differences using standard errors clustered at the
province level are reported. The results are qualitatively similar when using Conley standard errors.

Piecing results across the three sectors, it appears that each age group has a differ-
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ent response to hot temperatures. While workers are more likely to leave agriculture

as a consequence of temperature changes, younger workers are more likely than older

workers to take up a job in formal non-agriculture. On the other hand, informal non-

agriculture plays equally important role in absorbing workers of all groups. Again,

there is no effect on non-employment for any group, which suggests that this is not

an income channel effect, else labor supply should rise.

4.2.2 Long Differences Approach

Figure 7 presents the temperature effects on the four key outcomes estimated us-

ing the long differences approach. Consistent with the panel results, controlling for

other weather variables and region-specific age group-specific trends, provinces ex-

periencing a larger change in the shape of temperature distribution between any two

sub-periods see a larger reduction in the agricultural labor share and increases in

the formal non-agricultural employment share, and these effects are all statistically

significant at the 5% level when standard errors are clustered at the province level,

and account for spatial and temporal correlation. The effects on the informal labor

share are positive but less precisely estimated. No temperature effect on the share of

inactive and unemployed workers is detected.

Using the shape and location components in the long differences specification al-

lows one to examine the relative importance of “general warming” versus “increased

risk of extreme temperatures” in inducing labor allocation. Evaluated at the sample

mean, while the effects of shape difference are significant, general warming as prox-

ied by location shifts have much smaller effects.46 These findings are consistent with

previous ecology literature, which emphasizes the potentially greater risks associated

with changes in variation, as opposed to temperature mean, to the ecological systems

(Vasseur et al. 2014; Turner et al. 2020).

Figure 7 Panel B presents the long differences estimates with changes in degree

days during the reference period being used as the key independent variables of inter-

est, using the periods 1992-2008 and 2009-2018. Consistent with findings from the

panel approach, cold temperatures do not have any significant effect on sectoral labor

shares. Across agriculture and non-agriculture specifications, the long differences es-

timates of hot temperature effects are of larger magnitude than the respective panel

estimates (p-values < 0.05). Evaluated at the sample mean, the point estimate of

46Furthermore, the statistically significant effects of location shifts are not robust to additional tests
that will be discussed in the next section (See Appendix Figure C4).
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Figure 7: Wet-bulb Temperature and Sectoral Labor Share: Long Differences

Panel A: KLD Measures

Panel B: Degree Days Measures

Notes: This figure presents the effects (as point change) of moving from a value of zero to the sample mean in KLD
shape and location (Panel A) and the effects of 1 SD increase in degree days above 27◦C or below 9◦C (Panel B) on
sectoral employment shares, which are obtained from estimating equation (13). Panel A and Panel B include the two
sub-periods 1992-2008 and 2009-2018. Province distances are computed from province geographic centroids. All
regressions include average sampling weights.

the hot temperature effects on agricultural labor share is -0.028 (95% CI = [-0.044,

-0.016]) with the panel approach, and -0.074 [-0.112, -0.036] with the long differ-

ences approach. The corresponding effects on formal non-agricultural labor share are

0.013 [0.003, 0.023] (panel approach), and 0.041 [0.020, 0.060] (long differences

approach). The hot temperature effects on informal non-agricultural employment

share using the panel and long differences approach are 0.018 [0.005, 0.031] and

0.031 [0.0002, 0.061], respectively.

Similar to the panel approach, the long differences estimation also yields sig-
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nificant heterogeneous effects of hot temperatures on formal non-agricultural labor

shares across age groups (Figure 8). Although I cannot reject the null of no differ-

ences in temperature effects for the agricultural labor share across age groups, the

trend in the point estimates suggest that older workers are less responsive to hot tem-

peratures. There is no evidence of differential temperature effects across age groups

for informal non-agriculture, as well as no labor supply effect. There is little evidence

of (differential) cold temperature effects on sectoral employment shares across age

groups (Figure C12).

Figure 8: Wet-bulb Temperature and Sectoral Labor Share by Age Group

Results from Models with Degree Days, Long Differences Approach

Notes: This figure presents the effects (as point change) of 1 SD increase in degree days with wet-bulb temperature
27◦C (DD27) on sectoral labor shares of different age groups. Estimates obtained from equation (11). p-values from
the F-test of significant age cohort differences using standard errors clustered at the province level are reported. The
results are qualitatively similar when using Conley standard errors.

4.3 Robustness Checks and Placebo Test

Robustness Checks. I assess the robustness of the main estimates on average and

age-heterogeneous temperature effects on sectoral labor allocation to a number of de-

viations from the baseline specification in Appendix C1. First, the estimates are stable

when I control for time-varying demographic characteristics that might influence sec-

toral employment, including share of male workers, share of ethnic minority workers,

and educational attainment. Second, I obtain similar estimates with different sample

restrictions, including removing observations from earlier household survey rounds

which are arguably not representative at the province level. Similarly, the results
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are not sensitive to excluding observations of a specific province from the estima-

tion. Third, the estimates are not driven by potential omitted variable bias caused by

the high correlation in sectoral employment shares at the province level over time.

Fourth, the results are robust to alternative methods of constructing weather variables

(e.g., weighted average of the four closest grid points using inverse distance weight-

ing, averaging values of grid points over a geographical boundary) and alternative

weather exposure definition. Fifth, the results from the panel approach are robust to

different functional forms of temperature (e.g., fourth-order polynomials, cumulative

temperature bins, and degree day bins), while the results from the long differences

approach are robust to different period definitions.

Placebo Test. In Appendix C2, I verify using Monte Carlo-based permutation anal-

yses that (11) and (13) provide correct inference and unbiased estimates of the tem-

perature effects given the properties of the current data.

Additional Results using Dry-bulb Temperatures. In Appendix C3, I show that

similar to the results using wet-bulb temperatures, hot dry-bulb temperatures are

associated with a decrease in agricultural labor share and increases in formal and

informal non-agricultural employment shares, but do not affect the share of unem-

ployed and inactive workers. These coefficients, however, are less precisely estimated

compared to when using wet-bulb temperatures.

4.4 Migration, and Effects by Education and Gender

Migration Analysis. In studying intersectoral labor reallocation, I have implicitly

assumed that local markets are bounded at the province level. Previous research,

however, has demonstrated the prevalence of human migration across spaces in re-

sponse to climate change.47 Inter-provincial migration might alter demographic com-

positions and therefore mechanically lead to changes in sectoral employment shares

at the province level, without being driven by underlying forces, as will be discussed

in Section 5.

I explore this concern by first conducting a decomposition exercise following Mc-

Caig and Pavcnik (2018). Results in Appendix Table D3 suggest that most of the

structural change happens within provinces through this decomposition. In addition,

while I do not have micro-level migration data for each age group over the study

47See Cattaneo et al. (2019) for a review of relevant literature.

33



period, I provide supporting evidence by estimating a variant of equation (11) us-

ing aggregate data from statistical yearbook, where the outcomes being the rates of

migration, including out-migration, in-migration, and net-migration at the province

level. Appendix Table D4 shows little evidence of cold and hot temperature effects on

migration rates.

The findings based on the decomposition and migration analysis exercises sug-

gest that inter-provincial migration is not a first-order response and provincial-level

labor markets are relatively bounded. As a result, within-province intersectoral labor

reallocation is an empirically relevant margin in this setting.

Gender and Education Analyses. Previous literature has demonstrated the poten-

tially differential effects of environmental changes in general on human capital and

labor outcomes by gender (e.g., Maccini and Yang (2009) and Björkman-Nyqvist

(2013)). In this context, however, I find no evidence of heterogeneous tempera-

ture effects on intersectoral labor reallocation by gender (Appendix Table D5). Like-

wise, I find limited evidence of differential temperature effects by education level,

which again suggests that the heterogeneous results by age cohorts in the formal

non-agricultural sector cannot be explained by differences in educational attainment

across these groups.48

5 Potential Mechanisms

The analysis so far yields two main results. First, temperature changes, particularly

at the higher end of the distribution, accelerate a movement of workers out of agri-

culture. Second, there are heterogeneous temperature effects across age groups and

sectors of destination work. This section explores potential mechanisms underlying

these results.

5.1 Hot Temperatures Accelerate Labor Reallocation out of Agriculture

According to the theoretical model, the results on average effects where hot tem-

peratures induce reallocation of workers from agriculture to non-agricultural sectors

are consistent with being predominantly driven by the relative labor productivity loss

mechanism when the price is hold fixed. In what follows, I offer additional evidence

to support this channel.
48I observe differential temperature effects on labor shares in informal non-agriculture. In particular,

workers with a high school diploma are much less likely than peers without one to get an informal
non-agricultural job in response to hot temperatures, which might reflect preference differences among
individuals with different educational attainments.

34



The Labor Reallocation Effects Out of Agriculture Are Concentrated in Areas that

Are More Integrated Into the World Market and Whose Prices Are Less Affected

by Temperature Change. To begin, I test whether temperatures affect prices of

rice–the country’s main staple crop. I construct a province-level panel dataset of rice

prices using the household surveys and I estimate equation (11) with the outcomes

being mean and median price of rice at harvest, as well as mean and median price of

rice sold by households in each province. Results in Appendix Table D6 shows that

rice prices across the country are not significantly affected by temperature changes.

Next, I test whether hot temperatures affect labor allocation in areas with decent

access to trade more than in distant areas. I estimate a variant of equations (11)

and (13) where weather variables, including temperature, are interacted with an

“open” indicator. I proxy for trade openness using two measures. The first measure

is the distance from a province geographic centroid to the nearest major seaport. The

second measure is the correlation coefficient between local agricultural price series,

specifically rice price, and that of the world market.49 The idea is that areas closer

to major seaports and/or more integrated to the global economy are less affected by

temperature-induced price and local demand effects, and thus most labor reallocation

is driven by relative labor productivity loss.

Table 1 presents results from the panel and long difference approaches using dis-

tance to the nearest major seaport as a proxy for trade openness. As seen, the tem-

perature effects on agricultural and non-agricultural employment shares are entirely

driven by areas that are relatively more open to trade. In provinces that are less con-

nected, there were actually opposite effects: hot temperatures are associated with an

increase in agricultural labor share and decreases in non-agricultural labor shares.

Even though these opposite effects are imprecisely estimated in the panel approach,

they are intensified and become statistically significant at the 5% level when eval-

uated over a longer time frame. The point estimates of the temperature effects on

informal and formal non-agricultural sectors in both approaches further suggest that

local demand effects play an important role in these isolated areas: there is a much

larger decrease in share of workers in informal non-agriculture, whose products are

mostly non-tradable. Consistent with this hypothesis, Appendix Table D7 shows that

hot temperatures significantly decrease household consumption and nonfood con-

sumption in particular in those remote areas.

49For details in the construction of this measure and its caveat, see Appendix B3.
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Table 1: Wet-bulb Temperature and Sectoral Labor Share by Trade Openness

Trade openness is proxied by distance to the nearest major seaport

Panel A: Panel Approach

(1) (2) (3) (4)

Agriculture
Formal

Non-Agriculture
Informal

Non-Agriculture
Inactive and
Unemployed

DD27 × (Open=0) (N) 0.0027 0.0002 -0.0027 -0.0000
(0.0021) (0.0009) (0.0016) (0.0005)

. [0.0037] [0.0012] [0.0018] [0.0018]
DD27 × (Open=1) (T) -0.0486 0.0224 0.0307 -0.0047

(0.0133) (0.0081) (0.0116) (0.0066)
. [0.0157] [0.0069] [0.0119] [0.0055]
p-value (N) = (T) 0.0004 0.0086 0.0060 0.4795
Observations 1707 1707 1707 1707
Province × Age Group FE x x x x
Region × Age Group × Year FE x x x x

Panel B: Long Differences Approach

(1) (2) (3) (4)

Agriculture
Formal

Non-Agriculture
Informal

Non-Agriculture
Inactive and
Unemployed

DD27 × (Open=0) (N) 0.0309 -0.0133 -0.0217 0.0041
(0.0095) (0.0077) (0.0061) (0.0035)

. [0.0089] [0.0067] [0.0061] [0.0045]
DD27 × (Open=1) (T) -0.0812 0.0297 0.0648 -0.0134

(0.0395) (0.0198) (0.0279) (0.0166)
. [0.0297] [0.0115] [0.0255] [0.0099]
p-value (N) = (T) 0.0049 0.0381 0.0034 0.2942
Observations 156 156 156 156
Region × Age Group FE x x x x

Notes: Each panel presents the effects (as point change) of 1 SD increase in degree days above 27◦C, separately for
tradable and non-tradable markets, on sectoral employment shares. Unit of analysis is province-agegroup-year for the
panel approach, and province-agegroup for the long differences approach. “Open” is an indicator that takes value 1 if
the distance from a province centroid to the nearest major port is below the 70th percentile (approximately 200 km)
and 0 otherwise. All regressions control for other weather variables (cold temperatures, second-order polynomials
of precipitation and wind speed) and their interactions with the ‘Open’ dummy. Robust standard errors clustered at
the province level are in parentheses. Conley standard errors that allow for spatial correlation up to 150 km and
and serial correlation up to five lags are in brackets. Province distances are computed from province geographic
centroids.

Hot Temperatures Have Disproportionately Negative Effects on Agricultural La-

bor Supply. I test whether hot temperatures affect labor supply by estimating model

(11) where the dependent variable is the number of hours worked in each sector. If

hot temperatures affect human health and task performance, it might increase labor

dis-utility and lead to a reduction in their labor supply (Rode et al. 2022).
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Table 2 presents the effects of hot temperatures on average yearly hours of work

estimated from the panel model. In Panel A, the dependent variable is the mean

hours worked, conditional on working in a sector. In Panel B, the dependent variable

is the mean hours worked of individuals in an analysis unit, regardless of whether an

individual worked in a specific sector or not (i.e., individuals not working in a specific

sector are considered as working zero hours).

Table 2: Wet-bulb Temperature and Labor Supply

Hours worked are computed for the primary and secondary jobs

Panel A: Conditional Hours of Work (Intensive Margin)

(1) (2) (3)

Agriculture
Formal

Non-Agriculture
Informal

Non-Agriculture

DD27 -30.26 2.63 -4.76
(9.19) (5.67) (4.28)

. [8.97] [4.43] [3.03]
Mean Outcome 1278 1800 1788

Panel B: Unconditional Hours of Work (Extensive Margin)

(1) (2) (3) (4)

Agriculture
Formal

Non-Agriculture
Informal

Non-Agriculture Total

DD27 -19.64 6.13 4.77 -8.87
(4.46) (2.63) (2.41) (5.98)

. [5.15] [2.20] [2.44] [4.71]
Mean Outcome 766 420 670 1864

Observations 1551 1551 1551 1551
Province × Age Group FE x x x x
Region × Age Group × Year FE x x x x

Notes: Each panel presents the effects (as number of hours change) of 1 unit increase in degree days above 27◦C
on hours of work last 12 months. Unit of analysis is province-age group-year. In 2002, only hours worked for
the primary job are recorded and thus data from VHLSS 2002 are dropped for consistency. Dependent variables
are average number of hours worked, winsorized at the top 1% of the individual distribution by year. All columns
control for the second-order polynomials of precipitation, number of days with high wind speeds during the 12-
month exposure. Robust standard errors clustered at the province level are in parentheses. Conley standard errors
that allow for spatial correlation up to 150 km and serial correlation up to five lags are in brackets. Province
distances are computed from province geographic centroids. All regressions use sampling weights. SOURCES: Data
from Household Living Standards Survey 1992-1998, 2004-2018.

The results in Table 2 imply that one extra degree day higher than 27◦C wet-

bulb temperature decreases both measures of hours worked in agriculture by approx-

imately 20-30 hours per year. Given that the average cumulative exposure higher

than the 27◦C threshold is 4.7 degree days per year, an average agricultural worker
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tends to lower their labor supply by 98-140 hours per year, or 20-30 minutes per day

worked. Hours of work of existing workers in formal and informal non-agricultural

sectors, however, are generally not affected by hot temperatures. These results imply

that the increase in unconditional hours of work in formal non-agriculture (Columns

2 and 3, Panel B) is largely driven by new workers switching to this sector in response

to hot temperatures over time (extensive margin effects). There is some suggestive

evidence of a decline in total labor supply (Column 4, Panel B), although the effect is

insignificant at conventional levels.

Hot Temperatures Disproportionately Negatively Affect Agricultural Labor Pro-

ductivity. The results on conditional hours of work suggest that hot temperatures

cause a reduction in labor inputs to agricultural production but not formal or informal

non-agricultural production, which is consistent with findings from Graff Zivin and

Neidell (2014), who show that temperature increases at the right tail of the distri-

bution reduce hours worked in climate-highly exposed industries. If such a response

translates into sectoral productivity loss, hot temperatures can have differential ef-

fects on relative labor productivity loss across sectors.

I directly test the heterogeneous temperature effects on sectoral labor produc-

tivity.50 Table 3 shows that cold temperatures virtually do not affect sectoral labor

productivity, while the effect of hot temperatures is significantly larger in magnitude

for labor productivity in agriculture than other sectors of the economy. In particular,

one extra degree day higher than 27◦C leads to a 1% decrease in revenue per worker

50Specifically, I assemble a longitudinal dataset of province-level production for agriculture, formal
non-agriculture, and informal non-agriculture and estimate the effect of hot temperatures on revenue
per worker of each sector using a panel approach regression of the following form:

ln𝑤𝑝𝑟𝑡 = 𝑓 (WBT𝑝𝑡 ) + 𝑔(R𝑝𝑡 ) + 𝛾𝑝 + 𝛾𝑟𝑡 + 𝜖𝑝𝑟𝑡 (15)

where ln𝑤𝑝𝑟𝑡 denotes the log of revenue per worker in each sector (agriculture, informal non-
agriculture, and formal non-agriculture) in province 𝑝 of region 𝑟 in year 𝑡. Revenue in agriculture
is not restricted to crop production but also includes revenues from livestock, aquaculture, farm service,
and forestry. The term 𝑅𝑝𝑡 represents a vector of other weather variables in province 𝑝 in the reference
period relative to year 𝑡, including second-degree polynomials of rainfall and episodes of high speed
wind. The vector 𝛾𝑝 represents province-specific fixed effects, which control for province-specific time-
invariant unobserved characteristics that can affect the outcome. The term 𝛾𝑟𝑡 denotes region-specific
year fixed effects, which is to control for aggregate-level shock at the economic region level that is time-
varying. Again, I cluster the standard errors at the province level and also report Conley standard errors
that allow for spatial correlation up to 150 km and temporal correlation up to five lags. Ideally, one
should estimate the marginal product of labor in each sector and then examine the effect of hot tem-
peratures on that outcome. Details on such an approach are available in Appendix E. Data limitations,
however, do not allow me to estimate the marginal product of labor. Details on the construction of this
analysis dataset can be found in Appendix B1.1.
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in agriculture (p-value < 0.01). The corresponding effects on formal and informal

non-agricultural labor productivity are close to zero and statistically insignificant at

conventional levels. Appendix Table D8 further shows that hot temperatures also neg-

atively affect agricultural yields but the effects are smaller in magnitude relative to

revenue per worker: one degree day higher than 27◦C leads to approximately 0.4%

decrease in yields of rice–the main staple crop. Given that the planting area is largely

not affected by hot temperatures (Appendix Table D9), these findings suggest that

heat’s impact on agricultural labor transcend the commonly studied land productivity

mechanism wherein lower crop yields drive labor reallocation out of agriculture.51

Table 3: Wet-bulb Temperature and Sectoral Labor Productivity: 2002-2016

Agriculture
Formal

Non-Agriculture
Informal

Non-Agriculture

(1) (2) (3)

DD9 0.0000 -0.0047 0.0007
(0.0006) (0.0031) (0.0025)

. [0.0005] [0.0033] [0.0024]
DD27 -0.0105 0.0078 -0.0018

(0.0039) (0.0109) (0.0071)
. [0.0030] [0.0088] [0.0074]
Mean Outcome 2.28 5.33 3.49
Province FE x x x
Region-by-Year FE x x x
Observations 416 416 416

Notes: This table presents the effect of 1 unit increase in degree days above 27◦C. Unit of analysis is province-
year. Dependent variables are log of annual revenue per worker (2010 million VND). Mean outcomes are in log
points. Agricultural revenues cover crop production, livestock, aquaculture, and forestry. All columns control for
second-order polynomials of precipitation, and number of days with high wind speeds during the 12-month exposure.
Robust standard errors clustered at the province level are in parentheses. Conley standard errors that allow for spatial
correlation up to 150 km and serial correlation up to five lags are in brackets. Province distances are computed from
province geographic centroids. All regressions use production size (number of workers) as weights. SOURCES: Data
from Vietnam Enterprise Census and Household Living Standards Survey 2002-2016.

Although hot temperatures do not affect non-agricultural labor productivity on av-

erage, a subset of non-agricultural workers is also adversely affected. Appendix Table

D10 presents additional results from a model of firm-level fixed effects, using an un-

balanced 15-year longitudinal dataset of firms that appeared at least twice during the

51That temperatures do not significantly affect cultivated land is not surprising given the agricultural
land protection policies in Vietnam. In an effort to ensure food security, the government has issued
multiple documents (e.g., Decree No.63/NQ-CP, Decision 124/QD-TTg, Resolution 17/2011/QH13)
emphasizing agricultural/rice land protection with very few exemptions for land conversion to other
non-agricultural purposes that serve the national and public interests.
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period 2002-2016. The effects of hot temperatures on labor productivity in climate

highly exposed industries such as mining and quarrying are as large as in agriculture.

For example, one degree day above 27◦C is associated with approximately 1.6% de-

crease in labor productivity of small and old mining firms. The comparable effect

for old construction firms is a reduction of about 0.6%. These findings support the

underlying mechanism being a reduction in human labor productivity when workers

are exposed to thermal stress.

Taken together, these findings suggest that the relative labor productivity loss

mechanism dominates and year-to-year variation in hot temperatures induce workers

to move out of agriculture in most Vietnamese provinces. The fact that we observe

similar results in the effects of hot temperatures on labor reallocation both in the short

run and in the long run in Section 4.2 implies that the labor productivity mechanism

likely holds in the long term as well. In less connected areas, however, the temper-

ature effect on sectoral labor allocation runs in the opposite direction, suggesting

the dominance of local demand effects as in the case of Indian districts documented

by Liu, Shamdasani, and Taraz (2023). These findings are consistent with the two

predictions of the theoretical model: hot temperature-induced negative shock on agri-

cultural productivity increases the non-agricultural employment share in the case of

small open economies where prices are exogenous, but reduces the non-agricultural

labor share where prices are endogenously determined by production and demand

forces in closed economies.

5.2 Differential Effects by Age Group and Sector of In-Migration

The second set of main results is that hot temperatures have differential effects on the

rate of reallocation by age group and sector into which workers move. The theoretical

model predicts that the reallocation of labor from agriculture to non-agriculture is

decreasing in cost of working in the non-agricultural sector in the case of small open

economies. Furthermore, this cost can be inferred from the observed gains in earnings

among the sample of workers who switched sectors.

In this section, I provide evidence that the cost of switching from agriculture to

informal non-agriculture is similar across age groups, but it is significantly more

costly for older individuals to work a formal non-agriculture job. To do so, I esti-

mate the following regression, using the sample of sector-switchers from a pool of
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three-consecutive-survey-wave individual panel data sets over the period 2002-2018:

ln𝑤 𝑗𝑡 =
∑︁
𝑎

∑︁
𝑠

𝜅𝑎,𝑠I𝑎I𝑠 + 𝜓𝑈 𝑗𝑡 + 𝛾 𝑗 + 𝛾𝑡 + 𝜖 𝑗𝑡 (16)

where ln𝑤 𝑗𝑡 is the log real earnings of individual 𝑗 at time 𝑡. Earnings are computed

as the sum of labor wages, benefits, and household farm or non-farm net profits.52

The term I𝑠 takes the value of one if the individual works in sector 𝑠 for their main job

and zero otherwise. There are three sectors: agriculture (𝑔), formal non-agriculture

( 𝑓 ) and informal non-agriculture (𝑖). The term I𝑎 denotes whether the individual 𝑗

belongs to age group 𝑎 ∈ {24−39, 40−54, 55−64} that corresponds to the three age

groups in the main empirical analysis. Other time-variant controls such as age, age

squared, and log hours worked are included in vector 𝑈.

The vectors 𝛾 𝑗 and 𝛾𝑡 denote individual and year fixed effects, respectively. In-

dividual fixed effects are important because they control for individual-specific time-

invariant unobservables as well as time-invariant observables such as gender, eth-

nicity, or educational attainment, thereby minimizing the role of self-selection. Un-

der the assumption that switchers are marginal workers, the difference between the

parameters 𝜅𝑎,𝑠∈{ 𝑓 ,𝑖} and 𝜅𝑎,𝑔 reflect the extent of frictions in formal and informal

non-agriculture for switchers from agriculture for each age group. I also estimate

a variant of equation (16), where individual-specific time-invariant characteristics,

including education level, gender, and ethnic minority indicator, are interacted with

sector dummies, thereby allowing the returns to time-invariant observables to vary

across sectors.53

Results from this exercise, reported in Table 4, suggest two key findings. First,

there are large gains in annual average earnings for workers who switched from

agriculture to non-agricultural sectors, even after controlling for hours worked and

individual-specific time-invariant unobserved characteristics (Column 1). Under the

assumption that the returns to individual observables are uniform across sectors,

workers switching from agriculture to informal non-agriculture earn 20% more on

average, and the gain is 30% if they transition into formal non-agriculture (Columns

2-3). These estimates are in line with evidence in Hamory et al. (2021), who suggest

52Household members are assumed to receive a share of household net profits that is proportional to
their hours worked in household farm and non-farm business.

53I do not interact time-varying characteristics with sector dummies to reflect the idea that it is purely
the change in relative returns to observables, not any change in individual characteristics or their be-
haviors, that induces workers to switch sectors.
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an approximate gain of about 22% for individuals moving from agriculture to non-

agriculture in Indonesia. When the uniform return assumption is relaxed, the residual

gains when moving to informal non-agriculture are less precisely estimated, whereas

the gains from moving to formal non-agriculture remain similar in magnitude and

statistical significance (Columns 5-6).54

Second, across the two specifications, there is no differential gains across age

groups when moving from agriculture to informal non-agriculture (Columns 3 and

6). However, the group of older workers (age 55-64) experience largest gains when

switching into formal non-agriculture, whereas there is little evidence of differential

gains between the younger two groups (Columns 2 and 5).

Viewed through the lens of the model, these findings imply that for workers start-

ing in agriculture, the cost of switching into informal non-agriculture is lower than

formal one, which explains the larger effects of hot temperatures in magnitude on the

share of labor in informal non-agriculture compared to the formal non-agricultural

sector (Table 1). Furthermore, the older the workers, the larger the switching costs

they incur if getting a job in formal non-agriculture, which explains why the younger

workers comprise most of those who shift into this sector in response to extreme

temperatures.

5.3 Reconciling the Impacts of Temperature on Sectoral Labor Reallocation in
the Short and Long terms

The analysis on potential mechanisms so far speaks to the effects of hot temperatures

on sectoral employment shares, the relative temperature effects on formal and in-

formal non-agriculture, as well as the heterogeneous temperature effects across age

groups. I have not made any explicit argument on the relative larger temperature

effects (in magnitude) on agricultural and non-agricultural employment shares when

using the long differences approach compared to the panel one.

It is useful to recognize that the source of variation in the panel approach makes

54Under both assumptions, there is no full first-order dominance between sector-specific residual gains
among workers. However, a smaller (larger) percentage of workers have negative (positive) gains if
transitioning into both informal and formal non-agriculture relative to agriculture (See Appendix Figure
D4). I also find roughly 36-52 log-point differences in earnings from cross-sectional analysis under the
assumption of uniform return to individual observables across sectors (with agriculture-formal non-
agriculture gaps being the largest) after adjusting for individual controls and hours worked. In general,
even though these cross-sectional estimates are smaller than those reported by Gollin, Lagakos, and
Waugh (2014), they are 40-60% larger than those obtained from sample of switchers with individual
fixed effects reported in Column (1) of Table 4. These observations are not specific to this setting but
found in other settings as well. Hamory et al. (2021)’s work on Indonesia and Kenya, and Alvarez
(2020)’s work on Brazil are among several papers on low and middle income countries.
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Table 4: Gains in Labor Earnings among Switchers

Reference category is working in agriculture

log earnings
including profits constructed by hour worked

(1) (2) (3) (4) (5) (6)
Non

Agriculture Formal Informal
Non

Agriculture Formal Informal

Age Group 24-39 (G1) 0.266 0.329 0.249 0.299 0.506 0.141
(0.015) (0.018) (0.015) (0.120) (0.125) (0.131)

Age Group 40-54 (G2) 0.236 0.304 0.222 0.279 0.505 0.125
(0.015) (0.019) (0.015) (0.121) (0.125) (0.131)

Age Group 55-64 (G3) 0.310 0.454 0.270 0.355 0.658 0.190
(0.033) (0.048) (0.035) (0.124) (0.132) (0.135)

p-value G1 = G2 = G3 0.0620 0.0123 0.2801 0.0812 0.0079 0.2068
p-value G1 = G2 0.3158 0.2029 0.9626 0.4403
p-value G1 = G3 0.0145 0.5666 0.0029 0.1966
p-value G2 = G3 0.0032 0.2021 0.0023 0.0810
Adj.R2 0.544 0.545 0.545 0.548 0.550 0.550
Observations 37699 37699 37699 37699 37699 37699
Individuals 14053 14053 14053 14053 14053 14053
Year FE x x x x x x
Individual FE x x x x x x
Controls × Sector x x x

Notes: Sample includes workers who switched sector at least once in each three-wave panel. All regressions con-
trol for log hours worked, age and age squared. Results for formal and informal non-agricultural sectors (Columns
2-3, Columns 5-6) are estimated jointly. Earnings include labor wages, other benefits and household farm/non-farm
profits, trimmed at its top and bottom 5%. Household members are assumed to receive a share of household net
profits that is proportional to their hours worked in household farm and non-farm business. Individual controls in-
clude gender, ethnicity, marital status (married, single, widowed/separated), and general education qualification (no
education, primary education, lower secondary education, upper secondary education, post secondary education).
Robust standard errors clustered at individual level are in parentheses. SOURCES: Data from VHLSS three-wave indi-
vidual panel datasets 2002-2004-2006, 2004-2006-2008, 2010-2012-2014, 2012-2014-2016, and 2014-2016-2018.

the temperature-induced reallocation effects responses to an unanticipated shock.

In this case, the higher costs associated with frictions are, the slower the flow of

labor is. As a result, given that the cost of switching from agriculture to informal

non-agriculture is lower than the switching cost to formal non-agriculture, the panel

approach yields a larger temperature effect on informal non-agricultural labor share

than on formal non-agricultural employment share.

When workers’ career decision involves a dynamic discrete choice problem with

recurring switching costs, however, what matters are the choices that forward-looking

workers make in the face of the trend that global warming is disproportionately af-
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fecting agricultural productivity, making non-agricultural sectors relatively more at-

tractive. The reason is that when workers face switching costs across sectors, career

choices depend not only on current real wages, but also the career continuation values

that reflect the option and associated costs of being employed in a particular sector.

Under this scenario, hot temperatures will induce more forward-looking workers to

move out of agriculture and into the non-agricultural sectors when evaluated over

the longer time frame.

With this argument, if workers are indeed forward-looking and correctly assume

that hotter places are expected to experience more damages from hot days relative

to colder places in the face of global warming, then even in the short run, we should

be able to see larger reallocation effects (in magnitude) out of agriculture in hotter

relative to colder places. Indeed, results in Appendix Table D11 provide evidence that

there are differential effects of short-run increase in hot temperatures on agricultural

labor shares across hotter and less hot provinces. While extremely hot temperatures

lower the share of the labor force engaging in agriculture across both hot and less hot

areas, the point estimate for hot areas is significantly larger in magnitude and more

precisely estimated than that for less hot areas. Similarly, extremely hot temperatures

increase the share of workers in informal non-agriculture in both hot and less hot

provinces, but the point estimate for hotter provinces is significantly larger and more

precisely estimated than that for less hot provinces. For formal non-agriculture–the

sector into which entry incurs higher cost, the effect is similar across the two groups

of provinces.

In remote areas that are less integrated into global markets, on the other hand, the

finding that extreme temperatures increase labor share in the agricultural sector more

in the long run compare to the short run appears consistent with the intensification

hypothesis in which liquidity constraints likely amplify the inability of workers and

households to smooth consumption over time (Liu, Shamdasani, and Taraz 2023).

6 Conclusions

Climate change and associated extreme weather events affect different aspects of the

economy. Earlier works show that under negative agricultural productivity growth

induced by weather shocks and temperature rises, we observe reallocation of work-

ers away from and into agriculture. In this paper, I show that trade openness and

labor market frictions play crucial roles in the temperature-sectoral labor reallocation

relationship, and that extreme temperatures can affect sectoral employment choices
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beyond its well-documented negative impacts on crop productivity. These findings

have important policy implications.

First, although climate change accelerating the reallocation of labor away from

the relatively low-productivity agricultural sector in areas well-integrated to global

markets may sound beneficial to the economy, the fact that it has negative impacts

on labor productivity in other climate-exposed sectors, and that a nontrivial frac-

tion of such reallocation is into the informal non-agricultural sector makes the over-

all effects of climate change-induced labor reallocation less certain. Due to labor

market frictions that limit the movement of workers across sectors, informal non-

agriculture does not appear an occupational pathway. There is little scope for agricul-

tural workers to move to informal non-agriculture then subsequently move to formal

non-agriculture.55 Given that workers in the informal non-agricultural sector have

lower education attainment and productivity, on average, if a large part of infor-

mal workers in the Vietnamese economy fall into the survival category–as in Brazil

(Ulyssea 2018)–then climate change-induced labor reallocation might have impor-

tant welfare consequences by reinforcing the country’s comparative advantage in less

skill-intensive industries, which, if combined with low rates of innovation, might lead

to lower long run growth (Bustos et al. 2020).

Second, the opposite impacts of extreme temperatures on sectoral labor allocation

between well-connected (where prices are less affected by temperatures) and isolated

areas emphasize the role of trade openness to understanding the climate-employment

relationship. This suggests that reducing trade barriers may be critical to mitigating

climate damages in low and middle-income countries.

Finally, hot temperatures have differential effects on labor reallocation across age

groups and sectors into which workers move. While workers of all age cohorts are

equally likely to move into informal non-agriculture, younger workers comprise most

of those who shift to a formal non-agricultural job. Given the nontrivial gaps in labor

earnings between the informal and formal non-agricultural sectors, as well as the

lack of access to social protection benefits for informal sector workers, these findings

suggest that the older population likely disproportionately experiences work-related

welfare impacts caused by climate change.
55Appendix Figure D5 shows that among individuals who worked in agriculture in the first period and

in informal non-agriculture two years later, only 4.5% were able to take up a formal non-agricultural job
in the third period. Once an agricultural worker was able to transition into the formal non-agricultural
sector in the second period, however, they would face a 54% likelihood of continuing working in this
sector two years later.
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Cattaneo, C., M. Beine, C. J. Fröhlich, D. Kniveton, I. Martinez-Zarzoso, M. Mastror-
illo, K. Millock, E. Piguet, and B. Schraven (2019). “Human migration in the era
of climate change”. Review of Environmental Economics and Policy.

Colella, F., R. Lalive, S. O. Sakalli, and M. Thoenig (2019). Inference with arbitrary
clustering. IZA Discussion paper 12854.

Colmer, J. (2021). “Temperature, labor reallocation, and industrial production: Evi-
dence from India”. American Economic Journal: Applied Economics 13.4, pp. 101–
24.

46



Conley, T. G. (1999). “GMM estimation with cross sectional dependence”. Journal of
Econometrics 92.1, pp. 1–45.

Dell, M., B. F. Jones, and B. A. Olken (2012). “Temperature shocks and economic
growth: Evidence from the last half century”. American Economic Journal: Macroe-
conomics 4.3, pp. 66–95.

— (2014). “What do we learn from the weather? The new climate-economy litera-
ture”. Journal of Economic Literature 52.3, pp. 2774–2814.

Donovan, K., W. J. Lu, and T. Schoellman (2023). “Labor Market Dynamics and De-
velopment”. Quarterly Journal of Economics qjad019.

Emerick, K. (2018). “Agricultural productivity and the sectoral reallocation of labor
in rural India”. Journal of Development Economics 135, pp. 488–503.

Gollin, D., D. Lagakos, and M. E. Waugh (2014). “Agricultural productivity differences
across countries”. American Economic Review 104.5, pp. 165–70.

Gollin, D., S. Parente, and R. Rogerson (2002). “The role of agriculture in develop-
ment”. American Economic Review 92.2, pp. 160–164.

Graff Zivin, J. and M. Neidell (2014). “Temperature and the allocation of time: Impli-
cations for climate change”. Journal of Labor Economics 32.1, pp. 1–26.

GSO and ILO (2018). 2016 Report on informal employment in Vietnam. Tech. rep.
Government Statistics Office of Vietnam and International Labor Organization.

Hamory, J., M. Kleemans, N. Y. Li, and E. Miguel (2021). “Reevaluating agricultural
productivity gaps with longitudinal microdata”. Journal of the European Economic
Association 19.3, pp. 1522–1555.

Herrendorf, B. and T. Schoellman (2018). “Wages, human capital, and barriers to
structural transformation”. American Economic Journal: Macroeconomics 10.2, pp. 1–
23.

Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nico-
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A Proofs of Theoretical Predictions

The share of employment and the efficiency unit of labor in agriculture and non-

agriculture are determined as

𝐿𝑔 = 𝑁𝑔 =

∫ 𝜀

1
𝑑𝐹 (𝜀) = 1 − 𝜀−𝜃 = 1 −

[
𝑝𝑍𝑔𝐺

′(𝐿𝑔)
(1 − 𝜏)𝑍𝑛𝐻

′(𝐿𝑛)

]−𝜃

𝐿𝑛 =

∫
𝜀

𝜀𝑑𝐹 (𝜀) = 𝜃

𝜃 − 1
𝜀1−𝜃

𝑁𝑛 = 𝜀−𝜃 =

[
𝑝𝑍𝑔𝐺

′(𝐿𝑔)
(1 − 𝜏)𝑍𝑛𝐻

′(𝐿𝑛)

]−𝜃

In the context of this study, hot temperatures affect sectoral labor reallocation

through effects on sector-specific productivity 𝑍𝑔 and 𝑍𝑛 (and thus the supply of

and demand for agricultural goods). While the adverse effect of heat on agricultural

productivity is well-documented in the empirical literature (Schlenker and Roberts

2009), there is a dearth of evidence from developing settings on the relationship be-

tween heat and non-agricultural productivity, although existing evidence does suggest

a negative heat impact on productivity of climate-exposed industries (Somanathan et

al. 2021; LoPalo 2023).

Prediction 1: Small Open Economy. If the economy is sufficiently close to a small

open economy in the absence of trade barriers and extreme temperatures dispropor-

tionately affect agricultural productivity, then

(a) extreme temperatures reduce the employment share of agriculture

(b) extreme temperatures increase the employment share of non-agriculture

(c) the reallocation effect induced by extreme temperatures is decreasing in the

cost of working in non-agriculture

Proof. When the economy is sufficiently close to a small open economy, the rela-

tive agricultural price is held fixed by the world market 𝑝 = 𝑝. Temperature change

affects sectoral labor supply though its effects on productivity.

𝑁𝑔 = 𝐿𝑔 = 1 −
[

𝑝

(1 − 𝜏)𝑍𝑛

]−𝜃 [
𝑍𝑔𝐺

′(𝐿𝑔)
𝐻′(𝐿𝑛)

]−𝜃

(S1)

For simplicity, I assume (and later verify in the main analysis) that the negative
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temperature effect on non-agriculture is small and close to zero, and thus what mat-

ters is the effect of temperatures on agricultural productivity. Take implicit derivative

of equation (S1) with respect to 𝑍𝑔 and rearranging terms

𝜕𝑁𝑔

𝜕𝑍𝑔

=
𝜃

𝑍𝑔

[
Γ

(1 − 𝜏)

]−𝜃
{

1 − 𝜃

[
Γ

(1 − 𝜏)

]−𝜃 [
𝐺′′(𝐿𝑔)
𝐺′(𝐿𝑔)

+ Γ𝐻′′(𝐿𝑛)
(1 − 𝜏)𝐻′(𝐿𝑛)

]}−1

where Γ B
𝑝𝑍𝑔𝐺

′(𝐿𝑔)
𝑍𝑛𝐻

′(𝐿𝑛)

(S2)

Because 𝐺′(.) > 0, 𝐻′(.) > 0, 𝐺′′(.) < 0, 𝐻′′(.) < 0, 0 < 𝜏 < 1, 𝜃 > 0, the right-

hand side of equation (S2) is strictly positive. Therefore, 𝜕𝑁𝑔

𝜕𝑍𝑔
> 0, which implies that

if extreme temperatures cause a negative shock to agricultural productivity, then they

decrease the employment share in agriculture.

By the same argument, extreme temperatures-induced negative shocks to agricul-

tural productivity increase the employment share in non-agriculture.

𝜕𝑁𝑛

𝜕𝑍𝑔

= − 𝜃

𝑍𝑔

[
Γ

(1 − 𝜏)

]−𝜃
{

1 − 𝜃

[
Γ

(1 − 𝜏)

]−𝜃 [
𝐺′′(𝐿𝑔)
𝐺′(𝐿𝑔)

+ Γ𝐻′′(𝐿𝑛)
(1 − 𝜏)𝐻′(𝐿𝑛)

]}−1

(S3)

In addition, as the cost of working in non-agriculture increases within the range

0 < 𝜏 < 1, the right-hand side of equation (S3) decreases, implying that the marginal

effect of extreme temperatures on non-agricultural employment share is a decreasing

function in the cost of working in this sector. This suggests that holding all other

things constant, if workers of all age cohorts share the same level of cost in a non-

agricultural sector, the marginal effects of temperatures on employment shares in

this sector are similar across age cohorts. On the other hand, if older workers incur

a larger cost, the marginal effect of temperatures on non-agricultural employment

share of older workers is smaller than that of younger workers.

Prediction 2: Closed Economy. If the economy is sufficiently closed and extreme

temperatures disproportionately affect agricultural productivity, then under certain

conditions

(a) extreme temperatures increase the employment share of agriculture

(b) extreme temperatures decrease the employment share of non-agriculture

(c) the reallocation effect (in magnitude) induced by extreme temperatures is de-

creasing in the cost of working in non-agriculture
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Proof. When the economy is a closed system, the relative agricultural price 𝑝

is endogenously determined. Good markets equilibrium requires that 𝐶𝑔 = 𝑄𝑔 and

𝐶𝑛 = 𝑄𝑛. These combined with equations (1) and (4) imply that

𝑍𝑔𝐺 (𝐿𝑔) = 𝜁 + 𝛼

(1 − 𝛼)𝑝 𝑍𝑛𝐻 (𝐿𝑛)

where 𝑝 =
(1 − 𝜏)𝑍𝑛𝐻

′(𝐿𝑛)
𝑍𝑔𝐺

′(𝐿𝑔)
(1 − 𝐿𝑔)−1/𝜃

(S4)

Take implicit derivative of equation (S4) with respect to agricultural productivity

𝜕𝑁𝑔

𝜕𝑍𝑔

=
−𝜁
𝑍2
𝑔

[
𝐺′(𝐿𝑔) −

𝛼

(1 − 𝛼) (1 − 𝜏)Φ
]−1

𝜕𝑁𝑛

𝜕𝑍𝑔

=
𝜁

𝑍2
𝑔

[
𝐺′(𝐿𝑔) −

𝛼

(1 − 𝛼) (1 − 𝜏)Φ
]−1

where Φ =
𝐺′′(𝐿𝑔)𝐻 (𝐿𝑛)

𝐻′(𝐿𝑛)
(1 − 𝐿𝑔)1/𝜃 − 𝐺′(𝐿𝑔)

−
𝐺′(𝐿𝑔)𝐻 (𝐿𝑛)

𝜃𝐻′(𝐿𝑛)
(1 − 𝐿𝑔) (1−𝜃 )/𝜃 +

𝐺′(𝐿𝑔)𝐻 (𝐿𝑛)𝐻′′(𝐿𝑛)
[𝐻′(𝐿𝑛)]2

(S5)

Because 𝐺′(.) > 0, 𝐻′(.) > 0, 𝐺′′(.) < 0, 𝐻′′(.) < 0, 0 < 𝜏 < 1, 𝜃 > 0, and 𝜁 > 0,

𝑁𝑔 is a decreasing function in agricultural productivity. Adverse shocks to agricul-

tural productivity induced by extreme temperatures pull workers toward this sector.

Engel’s law plays a crucial role in this case. If 𝜁 = 0, then the share of workers in agri-

culture is independent of 𝑍𝑔 and thus agricultural productivity has no effect on labor

allocation. If 𝜁 < 0, that is, if the agricultural good is a luxury good, then a positive

shock to agricultural productivity is associated with an increase in agricultural labor

share.

By the same argument, as the cost of working in non-agriculture increases within

the range 0 < 𝜏 < 1, 𝜕𝑁𝑛

𝜕𝑍𝑔
increases, which implies that the magnitude of the marginal

effect of extreme temperatures on non-agricultural employment share is decreasing

in the cost of working in this sector.
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B Data and Measurement

B1 Data

B1.1 Employment and Labor Productivity Data

The household- and individual-level data are retrieved from the random 5% popula-

tion and housing census in 1989 (Minnesota Population Center 2015), and the house-

hold livings standard survey conducted by the General Statistics Office of Vietnam

(GSO) in 1993, 1998, and every two years since 2002 (GSO n.d.[a]). The household

survey is representative at the national and provincial level.

Table B1: List of Vietnamese Data Sets

Data Set
Reference

Period Sample size Source
Data

Access

Population and Housing Census 1989 12 months 5% census IPUMS Public
Living Standard Survey 1992/1993 12 months 4,800 households GSO Restricted
Living Standard Survey 1997/1998 12 months 6,000 households GSO Restricted
Household Living Standards Survey 2002 12 months 30,000 households GSO Restricted
Household Living Standards Survey 2004 12 months 45,000 households GSO Restricted
Household Living Standards Survey 2006 12 months 45,000 households GSO Restricted
Household Living Standards Survey 2008 12 months 45,000 households GSO Restricted
Household Living Standards Survey 2010 12 months 45,000 households GSO Restricted
Household Living Standards Survey 2012 12 months 45,000 households GSO Restricted
Household Living Standards Survey 2014 12 months 70,000 households GSO Restricted
Household Living Standards Survey 2016 12 months 45,000 households GSO Restricted
Household Living Standards Survey 2018 12 months 70,000 households GSO Restricted
Annual Enterprise Census 2002 to 2016 Fiscal year All formal firms GSO Restricted

The key variable of interest is employment in agriculture, informal non-agriculture,

and formal non-agriculture. The variable is constructed using data from the employ-

ment module of the survey, which covers hours worked, industries, as well as types

of employer of the two most time-consuming jobs. I restrict the sample to 24-64 year

old workers with information on industry of employment and types of employer to

capture working-age individuals with completed education.

Province-level longitudinal employment dataset For the main temperature-sectoral

employment analysis, I compute properly weighted share of individuals working their

principal job in agriculture, informal and formal non-agriculture, for each of the three

age groups (24-39 years old, 40-54 years old, and 55-64 years old) in each of the 52

provinces for each of the 11 survey waves over the study period. The final sample
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includes 1,707 province-age-year observations.1 For the temperature-sectoral hours

worked analysis, in 2002, only information of the principal job is collected. To ensure

the measure of hours worked in a sector is consistent over time, I drop data from the

survey wave 2002, which ends up having 1,551 province-age-year observations.

Figure B1: Summary Statistics on Province-level Employment Shares

Individual-level longitudinal dataset Although the household survey is repeated

cross-sectional, it contains a (random) rotating panel sub-component that tracks

households and individuals over a period of up to four years, which allows me to an-

alyze individual transition from agriculture to informal and formal non-agricultural

sectors over a longer time than is usually feasible. I link individuals over time us-

ing a unique individual identification code based on household identification, and

other individual information including gender, birth year, and sometimes confidential

information (e.g., full name) provided by GSO in order to ensure the matching is

correct.2

1In 1993 and 1998, only 50 and 51 provinces, respectively, were surveyed.
2The matching codes for the survey waves 2002 to 2006, and 2010 to 2012 are graciously shared by

McCaig and Pavcnik (2015) and McCaig and Pavcnik (2021), respectively.
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Province-level longitudinal production dataset I assemble a province-level pro-

duction dataset separately for agriculture, informal non-agriculture, and formal non-

agriculture.

Agriculture and Informal Non-Agriculture: I combine multiple waves of the household

survey from 2002 to 2016 to construct household-level agricultural and informal non-

agricultural production datasets.

The key variable of interest is annual revenue per worker. Agricultural revenues

comprise of revenues from crops, livestock, aquaculture, forestry, and farm services.

Informal non-agricultural revenues include revenues from non-farm business. The

number of workers are measured as the number of household members engaging in

agriculture and non-agriculture as their primary job. These information are reported

by the households for the 12-month reference period before the interview. Corre-

spondingly, I restrict the sample to households that do not hire labors, because the

household survey does not record information on the number of hired workers.

Household-level data are then merged with weather data in the same province us-

ing the timing of interview, similar to employment data. I then aggregate household-

level to provincial-level dataset by taking a weighted average of all household produc-

ers in that province, with weight being the production size (i.e., number of workers).

Formal Non-Agriculture: The firm-level data are retrieved from the annual census con-

ducted by the General Statistics Office of Vietnam since 2001 (VEC) (GSO n.d.[b]).

While the household survey has the advantage of covering both formal and informal

workers but the shortcoming that it is at best representative at the province level,

VEC has the advantage of a census and being available at yearly level, but small and

informal firms are not covered.

The enterprise census collects rich information on ownership type, industry type,

employment, labor compensations, as well as business performance and financial

information of registered firms in the preceding fiscal year. I construct a dataset from

2002-2016 for firms whose main economic activity is non-agriculture using a unique

firm identification code which comprises of tax code (available all periods), firm code

(available before 2012), and branch code (available before 2014). New firms that

do not have tax code yet are identified by a unique firm code assigned by the survey

team.

The key variable of interest is annual revenue per worker, where revenue is cal-
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culated as the net turnover of goods and services, and the number of workers are

measured at the end of fiscal year. In constructing the production data, I impose

the following conditions: (i) The firm should not operate more than one branch, (ii)

The firm should be in operation and report positive revenues, (iii) The firm should

report positive number of workers at year end. Restriction (i) drops 0.7% of the orig-

inal sample. Restrictions (ii) and (iii) mainly reflect data errors, and drop 9.6% and

0.008%, respectively, of the original sample. Firm data are then merged with weather

data in the same province. I then aggregate firm-level to provincial-level dataset by

taking a weighted average of all firms in that province, with weight being the firm

size.

Panel A of Figure B2 shows the number of firms in the analysis sample, which

reflects the increasing number of registered firms in Vietnam over the same period.

As in many other low and middle income countries, a majority of these firms are

young and small: more than 80% are less than three years old (Panel B), and nearly

70% have fewer than 10 workers (Panel C). Firms operating more than 10 years in

the market account for less than 3% of the total sample.

B1.2 Weather Data

This section summarizes how weather variables are constructed from the ERA5 re-

analysis data.

Wet-bulb temperature Wet-bulb temperature (WBT) is a nonlinear function of dry-

bulb temperature (i.e., ambient air temperature) and relative humidity. It reflects the

lowest temperature to which air can be cooled by the evaporation of water into the

air at a constant pressure. The measure of WBT has been increasingly used in the

economics literature to study the combined effects of heat and humidity on worker

productivity (Adhvaryu, Kala, and Nyshadham 2020; Somanathan et al. 2021; LoPalo

2023).

To calculate daily average WBT, I proceed in three steps. First, I calculate hourly

relative humidity RH, which is defined as the ratio of vapor pressure 𝑒 and satura-

tion vapor pressure 𝑒𝑠, using hourly air temperature T𝑎 (◦C) and hourly dew-point

temperature T𝑑 (◦C), following Bolton (1980):3

𝑅𝐻 = 100 × 𝑒

𝑒𝑠
= 100 × exp

[
17.67 × 243.5 × (T𝑑 − T𝑎)
(243.5 + T𝑎) (243.5 + T𝑑)

]
(S6)

3This equation is available as archive on University Corporation for Atmospheric Research’s website.
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Figure B2: Non-agricultural firm-level data

Panel A: Number of Firms

Panel B: Age Distribution (a) Panel C: Size Distribution

Second, I calculate hourly WBT using hourly dry-bulb temperature T𝑎 (◦C) and

hourly relative humidity RH (%), following Stull (2011):

WBT = T𝑎 × 𝑎𝑡𝑎𝑛
[
0.151977 × (𝑅𝐻 + 8.313659)0.5] + 𝑎𝑡𝑎𝑛(T𝑎 + 𝑅𝐻) − 4.686035

− 𝑎𝑡𝑎𝑛(𝑅𝐻 − 1.676331) + 0.00391838(𝑅𝐻)1.5 × 𝑎𝑡𝑎𝑛(0.023101 × 𝑅𝐻)
(S7)

Finally, I take the mean of hourly 𝑇𝑤 to get daily WBT.

Precipitation Daily precipitation is calculated as the sum of hourly precipitation. I

then compute the second order polynomial of daily precipitation at each grid-level.

This is done before the data are spatially averaged in order to accurately represent

the distributions at grid level.

Extreme precipitation I also construct standardized precipitation index for each
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month/year as the deviation of the observed precipitation from the long-term mean

divided by the historical standard deviation:

𝑆𝑃𝐼𝑝𝑚𝑦 =
𝑅𝑝𝑚𝑦 − 𝑅𝑝𝑚

𝜎𝑝𝑚

(S8)

where 𝑅𝑝𝑚𝑦 is the observed rainfall for a given month m of year y in province p.

𝑅𝑝𝑚 is the long-term mean rainfall in province p in month m over the 30-year period

1990-2020. 𝜎𝑝𝑚 is the corresponding standard deviation. The index helps determine

the level of excess relative to the climatological norm for the location. A province is

considered having excess rainfall in month m of year y relative to the long-term mean

if its 𝑆𝑃𝐼𝑝𝑚𝑦 ≥ 1.

Wind speed The data include wind components, which are eastward and northward

wind vectors, represented by the variables “U” and “V” respectively. The U wind

component is parallel to the x-axis (i.e., longitude) with a positive (negative) U wind

coming from the west (east). The V wind component is parallel to the y- axis (i.e.,

latitude) with a positive (negative) V wind coming from the south (north).

I calculate hourly value of wind speed, which is the magnitude of the wind vector,

using hourly U and V components according to the Pythagorean Theorem:4

wind speed =
√
𝑈 ×𝑈 +𝑉 ×𝑉 (S9)

Daily wind speed is then calculated by taking the maximum value of hourly wind

speed for the corresponding day.

Aggregation of grid-level weather data to province-level weather data I trans-

form grid-level weather data to province-level weather data using two methods. The

first method is to take weighted average of four nearest grid points to province cen-

troids, where the weight is inverse distance. The second method is to average all the

points within the geographic boundary of the first administrative level–a province,

except for wind speed where I use a maximum value. In both cases, nonlinear trans-

formations of temperature and rainfall are computed at the grid level before averag-

ing values across space, and finally summing over days during the reference period.

This procedure is similar to Carleton et al. (2022).

To see how this calculation is conducted, consider the fourth-order polynomial

specification for temperature. I begin with data on average temperatures for each

4GES DISC Data in Action: Calculate Wind Speed and Direction using U and V components.
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day 𝑑 at each grid point 𝑧, generating observations WBT𝑧𝑑. These grid-level val-

ues are aggregated to the province level 𝑝 for each 12-month reference period. To

do this, I first raise grid-level temperature to the power 𝑛, computing (WBT𝑧𝑑)𝑛 for

𝑛 ∈ {1, 2, 3, 4}. I then take a spatial average of these values following the two meth-

ods mentioned above. I then sum these daily polynomial terms (WBT𝑧𝑑)𝑛 over days

during individual-specific reference periods, i.e., 12 full months before the survey

interview. This nonlinear transformation performed prior to aggregation allows the

aggregated measure of temperature to capture grid-by-day level exposure to very hot

and very cold temperatures. Quadratic polynomials in precipitation are similarly cal-

culated.

Because there has been changes in the administrative boundaries in Vietnam over

the last three decades and most of the changes happen in case of splitting, I use the

original administrative units in 1993, which gives a consistent sample of 52 provinces

over the study period. An exception is that Ha Tay province was merged into Hanoi

city in 2008 and thus I use the boundary of the new Ha Noi for consistency. This pro-

cess results in the province-level vector of weather data for each 12-month interval.

B1.3 Other Data

I assemble a longitudinal dataset of yields for two major crops including rice and

maize at the province level from 1998 to 2018. The data are then collapsed into

the consistent provincial level during the study period. The analysis panel consists of

52 provinces over 10 years, biennially from 1998 to 2018. I also construct a panel

dataset of in-migration, out-migration, and net-migration rates at the province level

covering every two years from 2008 to 2018.5

B2 Informality Measurement

Informality can broadly be defined either from the worker side or from the employer

side. According to GSO and ILO (2018), informality on the worker side implies that

workers do not have social security benefits and labor contract with a minimum term

of three months (“informal workers”). On the employer side, informality implies that

firms do not have legal status or register with the government (“informal firms”). In

this paper, the notion of informality largely follows that from the employer side by

5These data are available on the GSO website, at https://www.gso.gov.vn/en/statistical-data. Be-
cause the agricultural data are available from 1995, while the migration data are only available from
the years 2005/2007 onward, I restrict the analysis data to those years overlapping with the study
period.
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assuming individuals who either are self-employed or work for household businesses

or collectives are employed informally (“informal employment”).

The household surveys include a question on whether a worker has benefited

from social insurance since the 2010 wave, and a question on whether she has a

labor contract since the 2014 wave. Although these two questions do not perfectly

capture the definition of informal workers defined by GSO and ILO (2018), they

allow a cross-check between the definition of informality employed in this paper and

of informal workers in 2014, 2016, and 2018.

Table B2: Informality

(1) (2) (3)
Pearson Correlation Coefficient

between Informal Workers
and Informal Employment

Share of
Formal Workers

in Informal Employment

Share of
Informal Workers

in Formal Employment

2014 0.8842 0.0021 0.1451
2016 0.8864 0.0017 0.1429
2018 0.8917 0.0021 0.1288
Total 0.8875 0.0020 0.1389

Notes: Informal employment is defined as self-employment, employment in household businesses, and collectives.
Informal workers are defined as those who do not have social security benefits nor labor contract. Source: Data from
VHLSS 2014, 2016, 2018.

Table B2 shows that the two definitions are largely similar. The Pearson corre-

lation coefficient between informal workers and informal employment variables is

nearly 0.9. Only a small fraction (less than 0.2%) of formal workers are classified as

informally employed. The notion of informal employment, however, does not capture

very well the intensive margin of informality: up to 14.5% of workers in formal firms

does not have social security benefits and labor contract.

Table B3 provides further details by industry and highlights the differences in

education, as proxied by years of schooling, between workers in the informal and

formal sectors across industries. Generally, workers in the informal sector have lower

educational attainment compared to their peers in the formal non-agricultural sector.

B3 Trade Openness Measurement

In the main analysis, I use the distance between a province’s geographic centroid

to the major ports as a proxy for market integration. In this section, I construct a

different measure of trade openness, relying on price information in the household

surveys. In particular, I proceed in four steps.
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Table B3: Education level of workers by industry and informality, non-agricultural
sectors

Years of Schooling
Share of Informal Workers

in Formal Firms

(1) (2) (3) (4) (5)
Informal Formal 2014 2016 2018

Manufacturing: high tech 8.945 11.086 0.037 0.015 0.031
Manufacturing: medium tech 8.192 10.686 0.159 0.117 0.125
Manufacturing: low tech 7.868 9.493 0.135 0.119 0.103
Service: knowledge intensive 9.440 13.296 0.060 0.061 0.050
Service: less knowledge-intensive 7.982 11.290 0.264 0.281 0.226
Mining and quarrying 7.405 10.831 0.131 0.140 0.147
Public utilities 8.737 11.884 0.053 0.077 0.073
Construction 7.805 10.323 0.474 0.466 0.473
Total 8.297 11.111 0.164 0.160 0.154

Notes: Informal workers are defined as those who do not have social security benefits nor labor contract. Source:
Data from VHLSS 2014, 2016, 2018.

(i) I compute price as total monetary value divided by total amount of harvest for

each crop.

(ii) I assemble a dataset of household-level price at harvest for three types of rice:

winter-spring ordinary rice, summer-autumn ordinary rice, and autumn-winter

(Mua) ordinary rice. Based on province-specific agricultural rice production

calendar, I then assign each price to the corresponding harvesting month, for

example, price at harvest of winter-spring rice is the June rice price in Red River

Delta region.6

(iii) I aggregate household-level price to province-level price by taking the median

price of all households in the same province. The price in nominal Vietnamese

Dong is then converted to nominal US Dollar using World Bank’s official ex-

change rates.7 The analysis dataset consists of 52 price time series for 52

provinces.

(iv) Such local rice monthly price time series are then compared with the monthly

world market price of Vietnamese rice 5% broken to obtain pairwise correlation

6These information are computed based on region-specific planting months reported by
the Vietnam Academy of Agricultural Sciences (VAAS). More details in Vietnamese at
https://vaas.vn/kienthuc/Caylua/01/index.htm.

7The exchange rate data are available at https://data.worldbank.org/indicator/PA.NUS.FCRF?locations=VN.
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coefficients.8 Because the world price series is only available from December

2003 with missing data for a few months between 2006-2008, one should in-

terpret this correlation with caution.

(v) For Ho Chi Minh City, the largest economic hub of the country and home to

the major Sai Gon seaport, there are insufficient data points on rice produc-

tion. I assign the maximum value of pairwise correlation coefficients from other

provinces for this city. The results are similar with the exclusion of this city.

Figure B3 Panel A plot series of local and world rice prices over time. As seen,

local rice prices are always lower than that of global markets and the two series share

similar trends. Panel B shows that rice prices in most Vietnamese provinces are highly

correlated with the world market price, with a mean value of correlation coefficient

of 0.67. There is also significant variation across provinces. The maximum value of

the correlation coefficient is nearly 0.9, whereas the minimum value is only 0.1. Panel

C further shows that the two measures of trade openness (rice price coefficients and

distance to the nearest major seaport), are strongly correlated.

I define a province as “open” if the distance from its geographic centroid to the

nearest major seaport is below the 70th percentile (approximately 200 km). Table

B4 presents the difference in returns to non-agricultural work, relative to agricultural

work, across well-integrated and remote areas, which are obtained from estimating

a variant of equation (16), using the sample of workers who changed sectors of em-

ployment. As seen, there is no statistical difference in the relative return to formal

non-agricultural work across these two types of markets. If anything, the relative re-

turn to informal non-agriculture is significantly larger in remote areas less integrated

to global markets than in other areas.

8The data on monthly world market price of Vietnamese rice 5% broken are obtained from the World
Bank’s “Pink Sheet,” available at https://www.worldbank.org/en/research/commodity-markets.
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Figure B3: Rice Price Series and Trade Openness Measures

Panel A: Local and World Rice Prices

Panel B: Distribution of provinces by rice price correlation coefficient

Panel C: Rice price correlations strongly correlated with distances to the neareast major sea-
port
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Table B4: Difference in Relative Returns to Non-Agricultural Employment between
Well-integrated and Remote Areas

Informal Non-Agriculture
–

Agriculture

Formal Non-Agriculture
–

Agriculture

(1) (2) (3) (4)

Isolated Areas - Connected Areas 0.101 0.077 0.045 0.017
(0.024) (0.024) (0.031) (0.031)

Adj.R2 0.545 0.550 0.545 0.550
Observations 37699 37699 37699 37699
Individuals 14053 14053 14053 14053
Year FE x x x x
Individual FE x x x x
Controls × Sector x x

Notes: This table presents difference in return to informal non-agricultural employment (columns 1-2) and return
to formal non-agricultural employment (columns 3-4), relative to agricultural employment, between isolated and
connected areas. Results for formal and informal non-agricultural sectors in each specification (columns 1 and 3,
columns 2 and 4) are estimated jointly. Sample includes workers who switched sector at least once in each three-
wave panel. All regressions control for log hours worked, age and age squared. Earnings include labor wages, other
benefits and household farm/non-farm profits, trimmed at its top and bottom 5%. Household members are assumed
to receive a share of household net profits that is proportional to their hours worked in household farm and non-
farm business. Individual controls include gender, ethnicity, marital status (married, single, widowed/separated),
and general education qualification (no education, primary education, lower secondary education, upper secondary
education, post secondary education). Columns (1)-(3) are estimated jointly. Robust standard errors clustered at
individual level are in parentheses. SOURCES: Data from VHLSS three-wave individual panel datasets 2002-2004-
2006, 2004-2006-2008, 2010-2012-2014, 2012-2014-2016, and 2014-2016-2018.

S15



C Robustness Checks and Additional Analyses

C1 Robustness

Robust to alternative specifications. Table C1 reports the results from estimating a

variant of equation (11) in which the response functions 𝑓 (.) and 𝑔(.) are not specific

to any age group.

Columns (1)-(3) increase the saturation of temporal controls in the model specifi-

cation. Column (1) controls for year-specific unobserved common shocks that affect

all age groups within each region to the same extent. Column (2) adds age-specific

linear time trends, allowing different age groups to follow different trends in a lim-

ited way. In column (3), which is the preferred specification, age groups of different

climatic and economic regions are assumed to follow more flexible trends. The esti-

mates can be interpreted as the point change in sectoral employment share resulting

from one SD increase in degree days below 9◦C or higher than 27◦C wet-bulb tem-

perature during the 12-month reference period.

Robust to sample restrictions. In the baseline analysis, I keep all province-age

group-year cells constructed from less than 30 individual observations. These cells

are mostly from the 1993 and 1998 rounds of the household survey where the sample

is relatively small with approximately 5,000 households nationwide, and is arguably

not representative at the province level. The effects are largely unchanged under the

exclusion of those cells (Appendix Figures C2 and C3).

Similarly, to ensure that the results are not driven by some particular observa-

tions, I re-estimate the main specifications with all observations of a province being

randomly dropped from each estimation. Figure C1 shows that the estimated coeffi-

cients remain stable and statistically significant under this test.

Robust to inclusion of time-varying demographic controls. A particular concern

over examining the effects of temperature on sectoral labor allocation is that edu-

cation effects might confound the temperature effects. The country’s extensive ed-

ucation expansion over the last few decades (Dang and Glewwe 2018) might have

equipped individuals with skills that are more valuable in non-agricultural sectors.

I test this concern by controlling for time-varying demographic characteristics that

might influence sectoral employment, including educational attainment, share of

male workers, and share of Kinh ethnic majority when estimating equations (11) and

(13). The inclusion of such variables could help absorb residual variation and produce

more precise estimates but could also be problematic if these variables themselves are
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Table C1: Wet-bulb Temperature and Sectoral Labor Share, Panel Approach

Effects of 1 SD Increase in Weather Variables

Agriculture Formal Non-Agriculture

(1) (2) (3) (4) (5) (6)

DD9 -0.0016 -0.0019 -0.0026 -0.0010 -0.0007 -0.0011
(0.0085) (0.0086) (0.0091) (0.0036) (0.0039) (0.0040)

. [0.0066] [0.0067] [0.0068] [0.0034] [0.0037] [0.0036]
DD27 -0.0459 -0.0493 -0.0520 0.0178 0.0214 0.0237

(0.0132) (0.0133) (0.0143) (0.0101) (0.0091) (0.0091)
. [0.0160] [0.0166] [0.0170] [0.0073] [0.0073] [0.0078]
Precipitation -0.0381 -0.0390 -0.0391 0.0111 0.0120 0.0120

(0.0188) (0.0188) (0.0198) (0.0093) (0.0094) (0.0098)
. [0.0171] [0.0170] [0.0171] [0.0084] [0.0084] [0.0084]
Precipitation squared 0.0163 0.0167 0.0162 -0.0016 -0.0016 -0.0013

(0.0130) (0.0129) (0.0136) (0.0054) (0.0053) (0.0055)
. [0.0104] [0.0103] [0.0103] [0.0050] [0.0049] [0.0048]
Mean Outcome 0.45 0.45 0.45 0.17 0.17 0.17
Adjusted R2 0.86 0.88 0.88 0.83 0.90 0.92

Informal Non-Agriculture Inactive and Unemployed

(1) (2) (3) (4) (5) (6)

DD9 0.0018 0.0017 0.0025 -0.0003 -0.0002 -0.0001
(0.0059) (0.0059) (0.0062) (0.0009) (0.0008) (0.0009)

. [0.0048] [0.0048] [0.0047] [0.0010] [0.0010] [0.0011]
DD27 0.0332 0.0323 0.0332 -0.0052 -0.0046 -0.0051

(0.0120) (0.0120) (0.0122) (0.0069) (0.0070) (0.0071)
. [0.0124] [0.0124] [0.0125] [0.0057] [0.0058] [0.0058]
Precipitation 0.0232 0.0231 0.0231 0.0038 0.0039 0.0040

(0.0159) (0.0160) (0.0166) (0.0059) (0.0059) (0.0062)
. [0.0131] [0.0132] [0.0131] [0.0049] [0.0050] [0.0050]
Precipitation squared -0.0126 -0.0128 -0.0128 -0.0020 -0.0021 -0.0020

(0.0112) (0.0112) (0.0117) (0.0031) (0.0031) (0.0032)
. [0.0070] [0.0070] [0.0070] [0.0027] [0.0027] [0.0028]
Mean Outcome 0.28 0.28 0.28 0.09 0.09 0.09
Adjusted R2 0.70 0.71 0.72 0.91 0.91 0.92

Observations 1707 1707 1707 1707 1707 1707
Province × Age Group FE x x x x x x
Region × Year FE x x x x
Age Group Linear Trend x x
Region × Age Group × Year FE x x

Notes: Unit of analysis is province-age group-year. Dependent variables are shares of employment in each sector.
All columns also control for number of days with high wind speeds during the 12-month exposure. Robust standard
errors clustered at the province level are in parentheses. Conley standard errors that allow for spatial correlation
up to 150 km and serial correlation up to five lags are in brackets. Province distances are computed from province
geographic centroids. All regressions use sampling weights.
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Figure C1: Sensitivity Test: Wet-bulb Temperature and Sectoral Labor Share

Results from “Leave-One-Out” Estimations

Panel Approach, DD27

Long Differences Approach, DD27

Long Differences Approach, KLD Shape

Notes: Each graph presents the distribution of estimated coefficients of temperature effects (DD27 or KLD Shape) on
sectoral employment shares, which are obtained from reestimating the main specifications in which all observations
of a province are randomly dropped from the sample. Vertical lines are baseline estimates.
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considered outcome variables. In Appendix Figures C2, C3, and C4, I show that the

coefficients on sectoral employment shares are of similar magnitude to those obtained

from the baseline specifications for both panel and long differences approaches and

are more precisely estimated. In some specifications, the new coefficients are of

slightly smaller magnitude but remained highly statistically significant. These find-

ings suggest that changes in these demographic characteristics cannot explain entirely

for the changes in sectoral employment shares induced by temperatures.

Robust to controlling for lagged outcomes. Because sectoral employment shares

at the local level are highly correlated from one year to the next, panel estimation

from equation (11) might suffer from omitted variable bias. I explore this concern

by controlling for the lagged value of the dependent variable in the preceding period.

A drawback of estimating this dynamic panel model is that it is inconsistent when

lagged dependent variables and fixed effects are estimated simultaneously with OLS

(Nickell 1981). This concern is especially prominent when the length of the data

panel is short. As seen in Appendix Figure C2, the coefficients obtained from such a

dynamic panel model are generally of similar magnitude to the coefficients from the

baseline specification.

Robust to alternate method of constructing weather variables. In the baseline

analysis, provincial level weather variables are computed as the weighted average of

the four grid points closest to provincial geographic centroid, with weights being the

inverse distance of weather grids to the province centroid. The results obtained from

both panel and long differences approaches also hold under an alternate construction

where province-level weather variables are computed as the average value of all grid

points within the geographical boundary of a province (Appendix Figures C2, C3, and

C4).

Robust to alternate definition of weather exposure. In merging the weather data

with individual-level data, I assume that individuals were exposed to the weather dis-

tribution of the full 12 months prior to the timing of survey interview. I address the

possibility that temperatures can exhibit lagged effects on decision to switch sector

by using an alternate exposure: I assign to each individual the weather distribution

of the full 14 months before the survey time. The new estimates are of smaller mag-

nitude than the corresponding baseline coefficients but remain statistically significant

(Appendix Figures C2 and C3).
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Robust to different period definitions (end points). I test the robustness of the

long differences results to an alternative end point. In the baseline specification, I

take the difference in outcomes (and weather variables) between two periods: 1992-

2008 and 2009-2018. The first period covering six household survey waves (1993,

1998, 2002, 2004, 2006, and 2008) and the second period covering five survey waves

(2010, 2012, 2014, 2016, and 2018). In an alternate estimation, I divide the study

period into two sub-periods: 1992-2007 (five survey waves) versus 2008-2018 (six

survey waves), and two ten-year sub-periods (1992-2002 vs. 2008-2018). The ef-

fects on agricultural and formal non-agricultural employment shares are of similar

magnitudes and remain statistical significance at the 5-10% level. The estimates for

informal non-agriculture are positive but less precisely estimated. (Appendix Figure

C3 and C4).
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Figure C2: Robustness: Wet-bulb Temperature and Sectoral Labor Share

Results from Panel Approach with Degree Days

Notes: This figure presents the effects of 1 SD increase in hot wet-bulb temperatures above 27◦C and cold temperatures below 9◦C on sectoral employment shares,
which are obtained from estimating equation (11). In the baseline specification, controls include province-by-age group and region-by-age group-by-year fixed effects,
second-order polynomials of precipitation, number of days with high wind speeds during the 12-month exposure. In the “Sample Restriction” specification, province-age
group-year cells constructed from less than 30 individual observations are excluded. In “Demographic Controls” specification, relative to the baseline, other time-
varying demographic characteristics including educational attainment, share of male workers, and share of ethnic minority are also controlled. In the “Lagged DepVar”
specification, relative to the baseline, the lagged dependent variables are controlled. In the “Weather Construction” specification, weather variables are constructed by
taking average of all grid points within a geographic boundary, instead of weighted average of four nearest grid points to the geographic centroid. In the “Weather
Exposure” specification, individuals are assumed to be exposed to 14-month weather distribution prior to the survey. Robust standard errors are clustered at the province
level. Conley standard errors allow for spatial correlation up to 150 km and serial correlation up to five lags. Province distances are computed from province geographic
centroids. All regressions use sampling weights. SOURCES: Data from Vietnam Household Living Standards Survey 1992-2018.
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Figure C3: Robustness: Wet-bulb Temperature and Sectoral Labor Share

Results from Long Differences Approach with Degree Days

Notes: This figure presents the effects of hot temperatures on sectoral employment shares, which are obtained from estimating equation (13). In the baseline specification,
I take the difference in outcomes (and weather variables) between two periods: 1992-2008 and 2009-2018, controls include region-by-age group fixed effects, episodes
of extreme high/low precipitation relative to long-term mean where the long-term mean is determined over the period 1980-2020, as well as number of days with high
wind speeds during the 12-month exposure. In the “Sample Restriction” specification, province-age group-year cells constructed from less than 30 individual observations
are excluded. In the “Demographic Controls” specification, relative to the baseline, other time-varying demographic characteristics including educational attainment,
share of male workers, and share of ethnic minority are also controlled. In the “Weather Construction” specification, weather variables are constructed by taking average
of all grid points within a geographic boundary, instead of weighted average of four nearest grid points to the geographic centroid as in the baseline specification. In
the “Weather Exposure” specification, individuals are assumed to be exposed to 14-month weather distribution prior to the survey. Robust standard errors are clustered
at the province level. Conley standard errors allow for spatial correlation up to 150 km and serial correlation up to five lags. Province distances are computed from
province geographic centroids. All regressions use average sampling weights.
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Figure C4: Robustness: Wet-bulb Temperature and Sectoral Labor Share

Results from Long Differences Approach with KLD Measures

Notes: This figure presents the effects of changes in temperature distribution, as proxied by KLD shape and KLD location, on sectoral employment shares, which are
obtained from estimating equation (13) and evaluated at the sample mean of the temperature variables. In the baseline specification, I take the difference in outcomes
(and weather variables) between two periods: 1992-2008 and 2009-2018, controls include region-by-age group fixed effects, episodes of extreme high/low precipitation
relative to long-term mean where the long-term mean is determined over the period 1980-2020, as well as number of days with high wind speeds during the 12-month
exposure. In the “Demographic Controls” specification, relative to the baseline, other time-varying demographic characteristics including educational attainment, share
of male workers, and share of ethnic minority are also controlled. In the “Weather Construction” specification, weather variables are constructed by taking average of
all grid points within a geographic boundary, instead of weighted average of four nearest grid points to the geographic centroid as in the baseline specification. Robust
standard errors are clustered at the province level. Conley standard errors allow for spatial correlation up to 150 km and serial correlation up to five lags. Province
distances are computed from province geographic centroids. All regressions use average sampling weights.
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Robust to alternative functional forms of temperatures. I estimate year-to-year

panel models where the temperature function is represented by degree day bins, and

fourth-order polynomials of daily average temperatures, summed across year. These

models provide sufficient flexibility to capture important non-linearity, as well as be-

ing relatively parsimonious with low demand on the data.9

As for cumulative temperature bins, denote the endpoints of the eleven tempera-

ture bins (less than 9◦C, 9 two-degree wide bins, higher than 27◦C) by [WBT1𝑘 ,WBT2𝑘)
with 𝑘 ∈ {1, 2, ..., 11}, and assume that a day with WBT contributes positive degrees

to the bin for which WBT1𝑘 < WBT ≤ WBT2𝑘 and zero to all others. I assume that

for WBT < 19◦C, the day contributes WBT2𝑘 − WBT to bin 𝑘; while for WBT > 19◦C,

the day contributes WBT−WBT1𝑘 to bin 𝑘. These values are then summed across the

reference period to determine the number of degrees in each bin.10

As for degree day bins, again denote the endpoints of the eleven temperature bins

(less than 9◦C, 9 two-degree wide bins, higher than 27◦C) by [WBT1𝑘 ,WBT2𝑘) with

𝑘 ∈ {1, 2, ..., 11}. I follow Somanathan et al. (2021) and consider a daily mean WBT

contributes positive degrees to the bin for which WBT > WBT1𝑘 and zero to all others.

If WBT ≥ WBT2𝑘 , the day contributes WBT2𝑘 − WBT1𝑘 to bin 𝑘; if WBT1𝑘 < WBT ≤
WBT2𝑘 then it contributes WBT − WBT1𝑘 to bin 𝑘.

As seen in Appendix Figures C5 and C6, the panel results from the baseline, par-

simonious model are robust to alternative functional forms of temperatures: all the

reallocation effects happen at the higher end of the temperature distribution–above

approximately 27◦.

9Following Carleton et al. (2022), in order to preserve the non-linear relationship between weather
variables and sectoral employment share that occurs at the grid cell level, although the equation (11)
is estimated at a higher level of aggregation, I first raise grid-level daily weather variables to the power
𝑛 ∈ {1, 2, 3, 4}, then take a weighted average of these values of the four grid points nearest to the
geographical centroid of province 𝑝, where the weight is inverse distance. I then sum these daily
polynomial terms over days during the reference period of individual 𝑗 in province 𝑝 before collapsing
into province-age group-year cell.

10The interpretation of these cumulative temperature bin coefficients therefore is similar to the base-
line parsimonious model, for example, the coefficient on the bin [25 − 27) represents the effect of one
additional degree day with WBT higher than 25◦C (but lower than 27◦C), and the coefficient on the bin
[15 − 17) denotes one additional degree day with WBT lower than 17◦C (but higher than 15◦C).
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Figure C5: Wet-bulb Temperature and Sectoral Labor Share

Results from Panel Approach with Cumulative Temperature Bins

Notes: This figure shows that the relationship between wet-bulb temperature and primary sectoral employment
share is robust to alternative functional form of temperatures. Each graph represents a predicted sectoral employ-
ment share-temperature response function (equation 11). Shaded areas are 95% confidence interval where robust
standard errors are clustered at the province level.
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Figure C6: Wet-bulb Temperature and Sectoral Labor Share

Results from Panel Approach

Panel A: Degree Day Bins Panel B: Fourth-Order Polynomials

Notes: This figure shows that the relationship between wet-bulb temperature and primary sectoral employment share is robust to alternative functional forms of
temperatures. Each graph represents a predicted sectoral employment share-temperature response function (equation 11). Shaded areas are 95% confidence interval
where robust standard errors are clustered at the province level.
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Heterogeneity results hold under these additional checks. Specifically, consis-

tent with findings from the baseline specification, the effect of temperature change

(hot days) on the formal non-agricultural labor share declines as one moves from the

youngest to the oldest group. As for the informal non-agricultural employment share,

however, the temperature effect is similar across the three groups. There is little evi-

dence of temperature effect on non-employment across groups (Appendix Figures C7,

C8, C9, C10, and C11).
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Figure C7: Wet-bulb Temperature and Sectoral Labor Share by Age Group

Results from Panel Approach with Degree Days Measures (DD27)

Notes: Results from estimating equation (11). Dependent variables are shares of employment in each sector. Province distances are computed from province geographic
centroids. All regressions use sampling weights. p-values from the test of significant age cohort differences using standard errors clustered at the province level are
reported. The results are qualitatively similar when using Conley standard errors.
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Figure C8: Wet-bulb Temperature and Sectoral Labor Share by Age Group

Results from Panel Approach with Fourth-Order Polynomials

Panel A: Age 24-39

Panel B: Age 40-54

Panel C: Age 55-64

Notes: Each graph represents a predicted sectoral employment share-temperature response function, estimated with
equation (11). Shaded areas are 95% confidence interval where robust standard errors are clustered at the province
level. Regression estimates are from a model of fourth-order polynomials in daily mean wet-bulb temperature.
Details are in Section C1. All age-specific response functions for a sector are estimated jointly in a stacked regression
model that is fully saturated with age group-specific fixed effects.
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Figure C9: Wet-bulb Temperature and Sectoral Labor Share by Age Group

Results from Panel Approach with Cumulative Temperature Bins

Panel A: Age 24-39

Panel B: Age 40-54

Panel C Age 55-64

Notes: Each graph represents a predicted sectoral employment share-temperature response function, estimated with
equation (11). Shaded areas are 95% confidence interval where robust standard errors are clustered at the province
level. Regression estimates are from a model of cumulative temperature bins. Details are in Section C1. All age-
specific response functions for a sector are estimated jointly in a stacked regression model that is fully saturated with
age group-specific fixed effects.
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Figure C10: Wet-bulb Temperature and Sectoral Labor Share by Age Group

Results from Panel Approach with Degree Days Bins

Panel A: Age 24-39

Panel B: Age 40-54

Panel C Age 55-64

Notes: Each graph represents a predicted sectoral employment share-temperature response function, estimated with
equation (11). Shaded areas are 95% confidence interval where robust standard errors are clustered at the province
level. Regression estimates are from a model of degree day bins. Details are in Section C1. All age-specific response
functions for a sector are estimated jointly in a stacked regression model that is fully saturated with age group-specific
fixed effects.
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Figure C11: Wet-bulb Temperature and Sectoral Labor Share by Age Group

Results from Long Differences Approach with Degree Days Measures (DD27)

Notes: Results from estimating equation (13). Other notes are similar to Figure C3. p-values from the test of significant age cohort differences using standard errors
clustered at the province level are reported. The results are qualitatively similar when using Conley standard errors.
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Figure C12: Wet-bulb Temperature and Sectoral Labor Share by Age Group

Results from Long Differences Approach with Degree Days Measures (DD9)

Notes: Results from estimating equation (13). Other notes are similar to Figure C3. p-values from the test of significant age cohort differences using standard errors
clustered at the province level are reported. The results are qualitatively similar when using Conley standard errors.
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C2 Placebo Test

As an additional check on the econometric specifications, I conduct a placebo test

with Monte Carlo analyses of equations (11) and (13) using actual employment and

climate data to ensure that the panel and long differences approaches provide cor-

rect inference and unbiased estimates. Specifically, in each Monte Carlo iteration, I

randomly reassign the weather series from one province-age group unit to another

province-age group’s employment series, and then test for temperature effects in

equations (11) and (13). The idea is that incorrect assignment of weather distribution

to province-age group employment shares should yield results of smaller magnitude

with zero mean or different sign and statistical insignificance.

Figure C13 presents the joint distribution of the estimated coefficients with ran-

dom assignment for agricultural, formal, and informal non-agricultural employment

share outcomes. The set of baseline estimates fall far outside the resulting joint distri-

bution of spurious random reassignment estimates, suggesting that the temperature-

sectoral employment share relationship is unlikely to arise by chance. The observed

Type I error rates across all approaches-sectoral outcomes are approximately 4-6%

when evaluating at the 5% significance level. These findings suggest that the infer-

ence is fairly accurate against the null hypothesis of no temperature effect.

Figure C13: Placebo Test: Wet-bulb Temperature and Sectoral Labor Share

Results from Monte Carlo Permutation Tests

Panel Approach LD, KLD Shape LD, Degree Days

Notes: Each graph presents the (joint) distribution of estimated coefficients (circles) of temperature effects on sec-
toral employment shares, which are obtained from 1,000 Monte Carlo simulations where the weather series of one
analysis unit is randomly reassigned to another unit’s employment share series. Diamonds represent the baseline
estimates from the panel approach and the long differences approach using KLD measures (shape) degree days mea-
sures (DD27).
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C3 Additional Results using Dry-Bulb Temperatures

I estimate equation (11) using fourth-order polynomials of dry-bulb temperatures.

As seen in Appendix Figure C14, similar to the results using wet-bulb temperatures,

hot dry-bulb temperatures are associated with a decrease in agricultural labor share

and increases in formal and informal non-agricultural employment shares, but do not

affect the share of unemployed and inactive workers. If anything, the temperature

effect on informal non-agricultural labor share is somewhat less precisely estimated.

Note that because wet-bulb temperatures are always lower than dry-bulb temper-

atures, the dry-bulb temperature cutoff above which labor reallocation effects are

concentrated is higher, at approximately 30◦C. This finding is consistent with Hsiang

(2010), who shows that above 29◦C surface temperature, the production-temperature

response steepens for all industries and services in the Caribbean and Central America

regions.

Figure C14: Dry-bulb Temperature and Sectoral Labor Share

Results from Panel Approach with Fourth-Order Polynomials

Average Effects

Notes: This figure represents a predicted sectoral employment share-temperature response function, estimated with
equation (11), where estimates are from a fourth-order polynomial in daily average dry-bulb temperature. Shaded
areas are 95% confidence interval. Robust standard errors are clustered at the province level.
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D Additional Tables and Figures

D1 Additional Tables

Table D1: Variation in Temperature Variables under Different Sets of Fixed Effects

Panel A: Degree Days in Panel Approach

DD27 DD9

(1) (2) (3) (4) (5) (6)
𝜎_𝑒(◦𝐶) |𝑒 | > 0.5◦𝐶 (%) |𝑒 | > 1◦𝐶 (%) 𝜎_𝑒(◦𝐶) |𝑒 | > 0.5◦𝐶 (%) |𝑒 | > 1◦𝐶 (%)

No FE 7.1 97.9 97.0 17.3 99.0 98.1
Province-age group FE 2.9 24.5 19.1 8.7 41.7 39.8
Province-age group + region-year FE 1.3 31.0 20.0 4.5 40.0 33.6
Province-age group + region-age group-year FE 1.3 31.4 20.2 4.5 39.8 33.5

Panel B: Degree Days in Long Differences Approach

DD27 DD9

(1) (2) (3) (4) (5) (6)
𝜎_𝑒(◦𝐶) |𝑒 | > 0.5◦𝐶 (%) |𝑒 | > 1◦𝐶 (%) 𝜎_𝑒(◦𝐶) |𝑒 | > 0.5◦𝐶 (%) |𝑒 | > 1◦𝐶 (%)

No FE 3.6 96.8 92.3 2.4 91.0 82.1
Region-age group FE 1.0 32.1 16.0 1.8 33.3 24.4

Panel C: KLD Measures in Long Differences Approach

KLD Shape KLD Location

(1) (2)
𝜎_𝑒 𝜎_𝑒

No FE 0.09 0.20
Region-age group FE 0.05 0.08

Notes: This table summarizes regressions of degree days (Panels A and B) and of KLD measures (Panel C) on different
set of fixed effects and how much of the variation remain. In Panels A and B, columns (1) and (3) report the standard
deviation of the residuals (remaining temperature variation) in degree Celsius, and columns (2/3) and (5/6) report
the fraction of residuals with an absolute value greater than 0.5/1◦C over the reference period.

S36



Table D2: Wet-bulb Temperature and Labor Shares by Industry

Results from Panel Approach with Degree Days

Agriculture Non-Agriculture

(1) (2) (3) (4)
Less

Skill-Intensive
Medium

Skill-Intensive
High

Skill-Intensive

DD9 -0.0020 0.0039 0.0014 -0.0032
(0.0082) (0.0072) (0.0013) (0.0013)

. [0.0064] [0.0057] [0.0010] [0.0018]
DD27 -0.0466 0.0351 0.0130 0.0063

(0.0126) (0.0079) (0.0023) (0.0040)
. [0.0155] [0.0132] [0.0024] [0.0030]
Mean Outcome 0.45 0.33 0.03 0.09
Adjusted R2 0.82 0.64 0.47 0.46
Observations 1707 1707 1707 1707
Province × Age Group FE x x x x
Region × Age Group × Year FE x x x x

Notes: This table presents the effect of 1 SD increase in degree days above 27◦C or below 9◦C on the share of
employment in each industry group. Unit of analysis is province-year. Less skill-intensive industries include those
classified as low-tech manufacturing, less knowledge-intensive services, construction and mining; medium skill-
intensive industries include those classified as medium-tech manufacturing and public utilities; high skill-intensive
industries include those classified as high-tech manufacturing and knowledge-intensive services according to the
Statistical Classification of Economic Activities in the European Community. The mean educational attainment of
workers in each industry is presented in Appendix Table B3. All columns control for the second-order polynomials
of precipitation, number of days with high wind speeds during the 12-month exposure. Robust standard errors
clustered at the province level are in parentheses. Conley standard errors that allow for spatial correlation up to 150
km and serial correlation up to five lags are in brackets. Province distances are computed from province geographic
centroids.
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Table D3: Decomposing Changes in Sectoral Labor Share Shares: 1992-2018

Agriculture
Informal

Non-Agriculture
Formal

Non-Agriculture

(1) (2) (3)

Total Change -0.314 0.111 0.203
Within Province -0.312 0.121 0.200
Between Province -0.002 -0.009 0.002

Notes: This table presents the results from the decomposition exercise following McCaig and Pavcnik (2018). I
decompose the change in the share of workers in each sector in total employment between 1992 and 2018, denoted
by Δ𝑆, into within and between province shifts, respectively: Δ𝑆𝑡 = 𝑆𝑡 − 𝑆𝑡−1 =

∑
𝑝 Δ𝑠𝑝𝑡ℎ𝑝 +∑

𝑝 Δℎ𝑝𝑡 𝑠𝑝 where ℎ𝑝𝑡

is the share of province 𝑝’s employment in total employment at time 𝑡, 𝑠𝑝𝑡 is the share of workers in sector 𝑠 in total
employment in province 𝑝, ℎ𝑝 = 0.5(ℎ𝑝𝑡 + ℎ𝑝𝑡−1 ), and 𝑠𝑝 = 0.5(𝑠𝑝𝑡 + 𝑠𝑝𝑡−1 ). The first summation term captures
the importance of mobility of workers across sectors within a province, and the second summation captures the
prevalence of mobility of workers across provinces as sources of changes in aggregate sectoral employment shares.
Estimates based on VLSS 1992/1993 and VHLSS 2018. Sample includes workers aged 24-64 inclusive. Survey
sampling weights included. The results are qualitatively similar when using other household survey rounds as the
start point.

Table D4: Wet-bulb Temperature and Migration Responses

In Migration Out Migration Net Migration

(1) (2) (3) (4) (5) (6)

DD9 0.0083 -0.0020 0.0144 -0.0324 -0.0072 0.0305
(0.0078) (0.0172) (0.0278) (0.0613) (0.0319) (0.0557)

. [0.0035] [0.0140] [0.0304] [0.0429] [0.0318] [0.0368]
DD27 0.0614 0.0622 -0.0811 -0.0336 0.1445 0.0975

(0.0535) (0.0565) (0.0752) (0.0981) (0.0913) (0.1194)
. [0.0420] [0.0466] [0.0735] [0.0851] [0.0820] [0.1022]
𝑁 312 312 312 312 312 312
Mean Outcome 5.060 5.060 6.712 6.712 -1.653 -1.653
Province FE x x x x x x
Region × Year FE x x x x x x
Province Linear Trend x x x

Notes: Unit of analysis is province-year. Dependent variables are migration rates (%) at the province level. All
columns control for the second-order polynomials of precipitation, number of days with high wind speeds during
the 12-month exposure. Robust standard errors clustered at the province level are in parentheses. Conley standard
errors that allow for spatial correlation up to 150 km and serial correlation up to five lags are in brackets. Province
distances are computed from province geographic centroids.
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Table D5: Hot Wet-bulb Temperatures and Primary Sectoral Labor Share, by Gender
and Education

Agriculture
Formal

Non-Agriculture
Informal

Non-Agriculture
No

Employment

(1) (2) (3) (4)

Male - Female -0.0002 -0.0014 0.0010 0.0006
(0.0019) (0.0012) (0.0019) (0.0006)

Observations 1138 1138 1138 1138
Province × Gender FE x x x x
Region × Gender × Year FE x x x x

High School and Above - Below 0.0033 0.0007 -0.0052 0.0013
(0.0030) (0.0016) (0.0022) (0.0009)

Mean Outcome 0.4501 0.1710 0.2769 0.0865
Observations 1134 1134 1134 1134
Province × Education FE x x x x
Region × Education × Year FE x x x x

Notes: This table presents the difference in the effects of hot temperatures (wet-bulb temperature degree days above
27◦C) on sectoral employment shares between male and female workers, and between individuals who have a high
school diploma or above and those who do not have a high school diploma. Unit of analysis is province-gender-
year or province-education-year, respectively. Each cell is from a separate regression. All regressions use weights.
Standard errors clustered at the province level in parentheses.
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Table D6: Wet-bulb Temperature and Rice Price

Price Harvest Price Sold

(1) (2) (3) (4) (5) (6) (7) (8)
Mean Mean Median Median Mean Mean Median Median

DD9 -0.0043 -0.0055 -0.0032 -0.0044 -0.0022 -0.0028 0.0001 -0.0006
(0.0038) (0.0045) (0.0040) (0.0049) (0.0039) (0.0045) (0.0038) (0.0048)

. [0.0029] [0.0030] [0.0031] [0.0032] [0.0029] [0.0027] [0.0031] [0.0031]
DD27 -0.0024 -0.0032 -0.0060 -0.0046 -0.0033 0.0048 -0.0088 -0.0038

(0.0072) (0.0080) (0.0093) (0.0090) (0.0113) (0.0078) (0.0160) (0.0126)
. [0.0077] [0.0084] [0.0087] [0.0096] [0.0088] [0.0093] [0.0122] [0.0127]
𝑁 415 415 415 415 415 415 415 415
Mean Outcome 4.13 4.13 4.12 4.12 4.19 4.19 4.15 4.15
Province FE x x x x x x x x
Region × Year FE x x x x x x x x
Province Linear Trend x x x x

Notes: Unit of analysis is province-year. In Columns (1)-(4), dependent variables are price of rice at harvest,
measured as the province-level mean/median of household-level revenue at harvest divided by output (thou-
sand VND/kg). In Columns (5)-(8), dependent variables are price of rice sold, measured as the province-level
mean/median of household-level revenue sold divided by output sold (thousand VND/kg). All columns control for
the second-order polynomials of precipitation, number of days with high wind speeds during the 12-month exposure.
Robust standard errors clustered at the province level are in parentheses. Conley standard errors that allow for spa-
tial correlation up to 150 km and serial correlation up to five lags are in brackets. Province distances are computed
from province geographic centroids. All regressions are weighted by household survey sampling weights interacted
with cultivated areas.
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Table D7: Wet-bulb Temperature and Household Consumption by Trade Openness

Trade openness is proxied by distance to the nearest major seaport

Total Consumption Food Consumption Nonfood Consumption Food Share

(1) (2) (3) (4) (5) (6) (7) (8)

DD27 × (Open=0) (N) -0.0087 -0.0098 -0.0015 -0.0019 -0.0071 -0.0080 0.0011 0.0014
(0.0041) (0.0035) (0.0014) (0.0012) (0.0033) (0.0027) (0.0014) (0.0011)

. [0.0036] [0.0036] [0.0015] [0.0015] [0.0024] [0.0025] [0.0010] [0.0010]
DD27 × (Open=1) (T) 0.0910 0.0775 0.0137 0.0123 0.0773 0.0652 -0.0189 -0.0115

(0.0543) (0.0717) (0.0100) (0.0141) (0.0458) (0.0584) (0.0035) (0.0068)
. [0.0626] [0.0719] [0.0125] [0.0136] [0.0512] [0.0595] [0.0080] [0.0083]
p-value (N) = (T) 0.0730 0.2272 0.1378 0.3196 0.0715 0.2141 0.0000 0.0679
Mean Outcome 1.1346 1.1346 0.4402 0.4402 0.6944 0.6944 0.4809 0.4809
Observations 569 569 569 569 569 569 569 569
Province FE x x x x x x x x
Region × Year FE x x x x x x x x
Province Linear Trend x x x x

Notes: Each panel presents the effect of 1 SD increase in degree days above 27◦C, separately for tradable and
non-tradable markets, on per capita monthly household consumption (2010 million VND). “Open” is an indicator
that takes value 1 if the distance from a province centroid to the nearest major port is below the 70th percentile
(approximately 200 km) and 0 otherwise. All regressions control for other weather variables (cold temperatures,
second-order polynomials of precipitation and wind speed) and their interactions with the ‘Open’ dummy. Robust
standard errors clustered at the province level are in parentheses. Conley standard errors that allow for spatial
correlation up to 150 km and and serial correlation up to five lags are in brackets. Province distances are computed
from province geographic centroids.

Table D8: Wet-bulb Temperature and Crop Yields

Rice (All) Rice (Winter-Spring) Maize Grains

(1) (2) (3) (4) (5) (6) (7) (8)

DD9 -0.0009 -0.0009 -0.0013 -0.0013 0.0016 0.0012 -0.0011 -0.0009
(0.0016) (0.0014) (0.0012) (0.0011) (0.0024) (0.0025) (0.0010) (0.0010)

. [0.0021] [0.0013] [0.0027] [0.0009] [0.0018] [0.0016] [0.0015] [0.0010]
DD27 -0.0198 -0.0174 -0.0404 -0.0346 -0.0088 0.0049 -0.0193 -0.0157

(0.0078) (0.0071) (0.0131) (0.0118) (0.0101) (0.0074) (0.0076) (0.0068)
. [0.0084] [0.0066] [0.0144] [0.0101] [0.0082] [0.0059] [0.0082] [0.0063]
𝑁 520 520 520 520 515 515 520 520
Mean Outcome 4.81 4.81 5.53 5.53 3.90 3.90 4.67 4.67
Province FE x x x x x x x x
Region × Year FE x x x x x x x x
Province Linear Trend x x x x

Notes: Unit of analysis is province-year. Dependent variables are crop yields, measured in tonnes per hectare, at the
province level. All columns control for the second-order polynomials of precipitation, number of days with high wind
speeds during the 12-month exposure. Robust standard errors clustered at the province level are in parentheses.
Conley standard errors that allow for spatial correlation up to 150 km and serial correlation up to five lags are in
brackets. Province distances are computed from province geographic centroids.
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Table D9: Wet-bulb Temperature and Agricultural Planting Area

Rice (All) Rice (Winter-Spring) Maize Grains

(1) (2) (3) (4) (5) (6) (7) (8)

DD9 -0.0042 0.0006 0.0073 0.0073 -0.1146 -0.0890 -0.1088 -0.0783
(0.0392) (0.0266) (0.0169) (0.0153) (0.1017) (0.0826) (0.1091) (0.0839)

. [0.0390] [0.0157] [0.0149] [0.0105] [0.0823] [0.0508] [0.0991] [0.0554]
DD27 -0.4749 -0.2502 0.0213 0.0186 0.2712 0.1039 -0.1736 -0.1165

(0.3850) (0.1513) (0.1028) (0.0338) (0.1700) (0.1138) (0.4050) (0.1847)
. [0.3753] [0.1395] [0.0723] [0.0478] [0.2437] [0.1176] [0.4882] [0.1792]
𝑁 520 520 520 520 520 520 520 520
Mean Outcome 145.07 145.07 58.39 58.39 19.76 19.76 164.91 164.91
Province FE x x x x x x x x
Region × Year FE x x x x x x x x
Province Linear Trend x x x x

Notes: Unit of analysis is province-year. Dependent variables are planting area, measured in thousand hectares, at
the province level. All columns control for the second-order polynomials of precipitation, number of days with high
wind speeds during the 12-month exposure. Robust standard errors clustered at the province level are in parentheses.
Conley standard errors that allow for spatial correlation up to 150 km and serial correlation up to five lags are in
brackets. Province distances are computed from province geographic centroids.

Table D10: Wet-bulb Temperature and Firm-Level Labor Productivity

Mining and Quarrying Construction

(1) (2) (3) (4)

DD27 -0.0040 -0.0074 -0.0014 0.0000
(0.0049) (0.0057) (0.0030) (0.0029)

DD27 × (Firm Size < 30 workers) -0.0120 -0.0008
(0.0036) (0.0019)

DD27 × (Firm Age >= 10 years old) -0.0087 -0.0061
(0.0028) (0.0010)

Total Temperature Effects -0.0160 -0.0161 -0.0022 -0.0061
(0.0056) (0.0056) (0.0029) (0.0030)

Sample Mean of DepVar 4.77 4.77 4.88 4.88
Firm FE x x x x
Region-by-Year FE x x x x
Observations 23896 23896 398851 398851

Notes: Unit of analysis is firm-year. Dependent variables are log of annual revenue per worker, measured in 2010
million VND. All columns control for firm age and firm size category dummies, cold temperatures (WBT < 9◦C),
the second-order polynomials of precipitation, number of days with high wind speeds during the 12-month exposure
and their interactions with firm category dummies. Robust standard errors clustered at the province level are in
parentheses.
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Table D11: Wet-bulb Temperature and Sectoral Labor Share by Long-run
Temperatures

Results from Panel Approach

(1) (2) (3) (4)

Agriculture
Formal

Non-Agriculture
Informal

Non-Agriculture
Inactive and
Unemployed

DD27 × Hot (H) -0.0103 0.0027 0.0080 -0.0005
(0.0014) (0.0010) (0.0015) (0.0006)

. [0.0016] [0.0010] [0.0004] [0.0006]
DD27 × Less Hot (C) -0.0055 0.0030 0.0031 -0.0006

(0.0018) (0.0010) (0.0015) (0.0008)
. [0.0022] [0.0009] [0.0018] [0.0006]
p-value (H) = (C) 0.0001 0.5690 0.0001 0.8665
Observations 1707 1707 1707 1707
Province × Age Group FE x x x x
Region × Age Group × Year FE x x x x

Notes: Unit of analysis is province-agegroup. Dependent variables are shares of employment in each sector. ‘Hot’
(‘Less Hot’) is an indicator that takes value 1 if the long-term mean temperatures of the province is above (below)
the country’s median level and zero otherwise. All regressions control for weather variables and their interactions
with ‘Hot’ dummy. Robust standard errors clustered at the province level are in parentheses. Conley standard errors
that allow for spatial correlation up to 150 km and and serial correlation up to five lags are in brackets. Province
distances are computed from province geographic centroids.
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D2 Additional Figures

Figure D1: Change in wet-bulb temperature distribution in two provinces:
1992-2008 vs. 2009-2018

Location-
unadjusted

Location-
adjusted

(a) Province A
overall divergence = 0.34

location = 0.25, shape = 0.08
Δmean temperature = 0.39◦C

(b) Province B
overall divergence = 0.35

location = 0.09, shape = 0.25
Δmean temperature = 0.40◦C

Notes: This figure plots the relative density of the recent temperature distribution 2007-2018 relative to the ref-
erence temperature distribution 1992-2006, and 95% confidence interval from a non-parametric estimation using
Epanechnikov kernel function with a bandwidth of 0.05 and 200 bootstraps. A relative density larger (smaller) than
one means the recent distribution is overrepresented (underrepresented) relative to 1992-2006 at the corresponding
level of temperature denoted on the top axis. While Province A experiences a relatively smooth righward shift in the
whole temperature distribution (location effect), Province B observes a polarization of temperature distribution with
fewer mild days and more hot days in recent years (shape effect).
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Figure D2: Distribution of daily mean temperatures 1992-2018

Panel A: Period 1992-2018

Panel B: Period 1992-1996 vs. 2014-2018
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Figure D3: Interview Month of an Average Person in each Province: 1992-2018

Figure D4: First-order stochastic dominance among sector-specific residualized dis-
tributions

Notes: Using the DASP packages developed by Araar and Duclos (2007), this figure plots the CDF (with 95% confi-
dence interval) of the sector-specific residualized distributions obtained from estimating sector gaps in earnings using
individual-level panel datasets for the sample of switchers. Under both assumptions of uniform and nonuniform re-
turns to individual characteristics across sectors, there is no full first-order dominance between sector-specific resid-
ual gains. However, below the zero residual gain, both informal and formal non-agriculture first-order dominates
agriculture, indicating that a smaller percentage of workers have negative gains if transitioning into non-agriculture.
Similarly, above the zero residual gain, agriculture first-order dominates non-agriculture, indicating that a larger
percentage of workers have positive gains if transitioning into non-agriculture. Sources: Data from five VHLSS three-
wave individual panels 2002-2004-2006 to 2014-2016-2018.

S46



Figure D5: Share of Switchers

Notes: This figure presents the percentage share (%) of switchers who primarily worked in one of sectors listed on the
y-axis in the first and second periods, and on the x-axis in the third period, among all workers who switched at least
once, using data from five VHLSS three-wave individual panels 2002-2004-2006 to 2014-2016-2018. “AG” denotes
agriculture, “IN” denotes informal non-agriculture, and “FN” denoted formal non-agriculture. Among switchers who
worked in agriculture in the first period, and in informal non-agriculture in the second period, only 4.7% was able
to work a formal non-agricultural job in the third period (0.98/(8.43+11.54+0.98)).

S47



E Estimating Temperature Effects on Marginal Product of Labor

Consider a firm or household’s production function technology that can be repre-

sented by a production function ℎ(.) that relates output (𝑌), inputs 𝑋 =
[
𝑋1, 𝑋2, ...

]
,

the Hicks-neutral efficiency level (𝐴) and wet-bulb temperature (WBT) so that 𝑌 =

ℎ [𝑋 (WBT), 𝐴(WBT)]. Assume that the firm or the household produces a homoge-

neous good with Cobb-Douglas technology:

𝑌 𝑗𝑡 = 𝐴 𝑗𝑡 (WBT)𝛱𝑘 (𝑋 𝑘
𝑗𝑡 (WBT)) 𝜃𝑘 (S10)

Temperature WBT could affect marginal product of labor through its effects on

TFP—which can be thought of as weighted average of capital productivity and labor

productivity (Zhang et al. 2018), as well as on inputs via, for example, inducing

worker absenteeism and reducing working hours or labor effort per unit time worked

(Somanathan et al. 2021; Graff Zivin and Neidell 2014).

To measure marginal product of labor, one can take natural logs of equation (S10)

and obtain the empirical model:

𝑦 𝑗𝑡 = 𝜃0 +
∑︁
𝑘

𝜃𝑘𝑥
𝑘
𝑗𝑡 + 𝑢 𝑗𝑡 (S11)

where 𝑦 𝑗𝑡 is the log of value-added or gross revenue for firm or household 𝑗 in year

𝑡, 𝑥𝑘
𝑗𝑡

denote the log of 𝑘 inputs. 𝜃𝑘 is the output elasticity of the corresponding

input 𝑘 that need to be estimated. 𝑢 𝑗𝑡 is the error terms. 𝑙𝑛(𝐴 𝑗𝑡 ) = 𝛼0 + 𝑢 𝑗𝑡 where

𝑢 𝑗𝑡 = 𝜔 𝑗𝑡 + 𝜂 𝑗𝑡 . 𝜔 𝑗𝑡 is the household or firm productivity shock and the residual 𝜂 𝑗𝑡 is

assumed to have standard properties.

Estimating equation (S11) using Ordinary Least Squares (OLS) might be biased

because of selection and simultaneity. Firms with lower productivity are more likely

to exit the market, thus resulting in selection bias. In addition, firms can decide

the levels of inputs based on their (partial) observation on productivity that is not

observed by the econometrician.

To deal with these concerns, one can apply the approach proposed by Olley and

Pakes (1996) (henceforth, OP) and Levinsohn and Petrin (2003) (henceforth, LP).

The idea of OP approach is to use the survival rate of a firm to correct for selection

bias and to use investment as a proxy for unobserved productivity shock to correct for

simultaneity. This method assumes that investment (conditional on capital stock) is

a strictly increasing function of the scalar, firm-level unobserved productivity shock,

which means that one can invert the unconditional investment demand function and
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control for the unobserved productivity shock by conditioning on a non-parametric

function of capital and investment. Similarly, LP approach assumes that intermediate

goods are a strictly increasing function of a scalar, firm-level unobserved productiv-

ity shock. As discussed by Ackerberg, Caves, and Frazer (2015) (ACF), both OP and

LP methods may suffer from functional dependence problems, that is, the condition

underlying the first stage estimation may not identify the coefficients of variable in-

puts (“the colinearity problem”). The authors instead propose alternative procedure,

which requires lagged values (e.g., lagged investment) for the estimation of the pro-

duction function.

Equation (S11) can then be separately estimated for three groups: informal agri-

culture, informal non-agriculture, and formal non-agriculture. With the estimated

input elasticity, one can derive the marginal product of labor for firm or household 𝑗

in year 𝑡:

𝑀𝑃𝐿 𝑗𝑡 = 𝜃𝑙
𝑦 𝑗𝑡

𝑙 𝑗𝑡
(S12)

and study the relationship between temperature and marginal product of labor by

estimating the following equation:

𝑀𝑃𝐿 𝑗𝑡 = 𝑓 (WBT𝑝𝑡 ) + 𝑔(𝑅𝑝𝑡 ) + 𝛾𝑝 + 𝛾𝑟𝑡 + 𝜀𝑝𝑟𝑡 (S13)

Similar to the main analysis, 𝑓 (WBT𝑝𝑡 ) can be represented by cumulative temper-

ature bins, degree day bins, and fourth-order polynomials. In the most parsimonious

model where 𝑓 (WBT) is a piece-wise linear function:

𝑓 (WBT𝑝𝑡 ) =


∑365

𝑑=1 𝛽9(9 − WBT𝑑𝑝𝑡 ) if 0 ≤ WBT < 9

0 if 9 ≤ WBT < 27∑365
𝑑=1 𝛽27(WBT𝑑𝑝𝑡 − 27) if WBT ≥ 27

(S14)

The estimated coefficients 𝛽9 and 𝛽27 represent the effects of one additional de-

gree day below 9◦C or above 27◦C, respectively, on sectoral marginal product of labor

during the fiscal year reference period.
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